K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

\(\frac{x-a}{b+c}+\frac{x-b}{c+a}+\frac{x-c}{a+b}=\frac{3x}{a+b+c}\)

$\Leftrightarrow \frac{x-a}{b+c}-1+\frac{x-b}{c+a}-1+\frac{x-c}{a+b}-1=\frac{3x}{a+b+c}-3$
$\Leftrightarrow \frac{x-(a+b+c)}{b+c}+\frac{x-(a+b+c)}{c+a}+\frac{x-(a+b+c)}{a+b}=\frac{3[x-(a+b+c)]}{a+b+c}$

$\Leftrightarrow (x-a-b-c)(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}-\frac{3}{a+b+c})=0$

Nếu $\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{c+a}-\frac{3}{a+b+c}=0$ thì PT có nghiệm $x\in\mathbb{R}$ bất kỳ.

Nếu $x-a-b-c=0$

$\Rightarrow x=a+b+c$

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

17 tháng 2 2019

\(\Leftrightarrow\dfrac{x-a-b-c}{b+c}+\dfrac{x-b-a-c}{a+c}+\dfrac{x-c-a-b}{a+b}=0\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a+b+c\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=0\end{matrix}\right.\)

Xét \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=0\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)ĐK: \(\left\{{}\begin{matrix}a\ne-b\\b\ne-c\\c\ne-a\end{matrix}\right.\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)+\left(c+a\right)\left(b+c\right)+\left(a+b\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+3\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)^2+ab+bc+ca=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\ab+bc+ca=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\ab-\left(a+b\right)b-\left(a+b\right)a=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\ab+a^2+b^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c=0\)

Vậy với x=a+b+c hoặc a=b=c=0 thì pt thỏa mãn.

10 tháng 1 2017

Nâng cao và pt tập 2 

28 tháng 2 2018

\(PT\Leftrightarrow\dfrac{x-a}{b+c}-1+\dfrac{x-b}{c+a}-1+\dfrac{x-c}{a+b}-1=\dfrac{3x}{a+b+c}-3\)

\(\Leftrightarrow\dfrac{x-a-b-c}{b+c}+\dfrac{c-a-b-c}{c+a}+\dfrac{x-a-b-c}{a+b}=\dfrac{3\left(x-a-b-c\right)}{a+b+c}\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}\right)=0\)

Nếu \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}=0\) thì PT có nghiệm với mọi \(x\in R\)

Nếu \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}\ne0\) thì PT có nghiệm là \(x=a+b+c\)

14 tháng 1 2016

bạn có thể cho mình cách gải được k

14 tháng 1 2016

cách giải là đi hỏi thầy,cô

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
PT $\Leftrightarrow 3x-\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\right)=a+b+c$

$\Leftrightarrow 3x=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}+a+b+c$

$=(ab+bc+ac)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})$

$\Leftrightarrow x=\frac{1}{3}(ab+bc+ac)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})$

8 tháng 3 2022

\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)=0\\ \Leftrightarrow x^2-ax-bx+ab+x^2-bx-cx+bc+x^2-cx-ax+ac=0\\ \Leftrightarrow3x^2-2\left(a+b+c\right)x+ab+bc+ca=0\left(1\right)\)

pt(1) là pt bậc 2 ẩn x có:

\(\Delta'=\left(-a-b-c\right)^2-3\left(ab+bc+ca\right)\\ =a^2+b^2+c^2+2ab+2bc+2ca-3\left(ab+bc+ca\right)\\ =a^2+b^2+c^2-ab-bc-ca\\ =\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

pt có no kép nên delta' =0

nên: \(\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\\ \Rightarrow a-b=b-c=c-a=0\\ \Rightarrow a=b=c\)

bonus: khi đó pt: \(3\left(x-a\right)^2=0\Leftrightarrow x-a=0\Leftrightarrow x=a\)

=> x=a=b=c

NV
9 tháng 1 2023

ĐKXĐ: \(x\ge1\)

\(x-1+\sqrt{5+\sqrt{x-1}}=5\)

Đặt \(\sqrt{x-1}=t\ge0\)

\(\Rightarrow t^2+\sqrt{t+5}=5\)

Đặt \(\sqrt{t+5}=u>0\Rightarrow u^2-t=5\)

\(\Rightarrow t^2+u=u^2-t\Leftrightarrow t^2-u^2+t+u=0\)

\(\Leftrightarrow\left(t+u\right)\left(t-u+1\right)=0\)

\(\Leftrightarrow t-u+1=0\) (do \(t>0;u>0\Rightarrow t+u>0\))

\(\Leftrightarrow t+1=\sqrt{t+5}\)

\(\Leftrightarrow t^2+2t+1=t+5\Leftrightarrow t^2+t-4=0\)

\(\Rightarrow t=\dfrac{-1+\sqrt{17}}{2}\)

\(\Rightarrow x=t^2+1=\dfrac{11-\sqrt{17}}{2}\)

9 tháng 1 2023

giúp e ạ e cảm ơn

https://hoc24.vn/cau-hoi/cho-chop-sabcd-day-hinh-binh-hanh-m-la-trung-diem-sc-mat-anpha-chua-am-cat-sdsb-tai-ef-tinh-sdse.7474367749811