Cho tam giác ABC có diện tích bằng 120,9 cm2. M là trung điểm của AB. Trên AC lấy điểm N sao cho AN bằng NC x 2.
a) Tính diện tích tam giác AMN
MN cắt BC kéo dài tại E. Hãy so sánh CB và CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có
\(NC=2AN\Rightarrow\dfrac{AN}{AC}=\dfrac{1}{3}\)
Hai tg ABN và tg ABC có chung đường cao từ B->AC nên
\(\dfrac{S_{ABN}}{S_{ABC}}=\dfrac{AN}{AC}=\dfrac{1}{3}\Rightarrow S_{ABN}=\dfrac{1}{3}xS_{ABC}\)
Hai tg DBN và tg DCN có chung đường cao từ D->BC và BM=CM nên
đường cao từ B->DM = đường cao từ C->DM
Hai tg DNA và tg DNC có chung đường cao từ D->AC nên
\(\dfrac{S_{DNA}}{S_{DNC}}=\dfrac{AN}{CN}=\dfrac{1}{2}\)
Hai tg này lại có chung DN nên
\(\dfrac{S_{DNA}}{S_{DNC}}=\) đường cao từ A->DM / đường cao từ C->DM \(=\dfrac{1}{2}\)
=> đường cao từ A->DM / đường cao từ B->DM \(=\dfrac{1}{2}\)
Hai tg DNA và tg DBN có chung DN nên
\(\dfrac{S_{DNA}}{S_{DBN}}=\) đường cao từ A->DM / đường cao từ B->DM \(=\dfrac{1}{2}\)
\(\Rightarrow S_{DBN}=2xS_{DNA}\)
\(\Rightarrow S_{DNA}=S_{DBN}-S_{ABN}=2xS_{DNA}-S_{DBN}\Rightarrow S_{DNA}=S_{ABN}=\dfrac{1}{3}xS_{ABC}=\dfrac{10}{3}cm^2\)
b/
Hai tg DNB và tg DNC có chung DN và đường cao từ B->DM = đường cao từ C->DM nên
\(S_{DNB}=S_{DNC}\)
c/ Hai tg DNA và tg ABN có chung đường cao từ N->DB nên
\(\dfrac{S_{DNA}}{S_{ABN}}=\dfrac{AD}{AB}=1\)
Nối A với D; B với N
+) Xét tam giác NMA và NBM có chung chiều ao hạ từ N xuống AB; AM = BM
=> S(NMA) = S(NBM)
=> chiều cao hạ từ A xuống MN = Chiều cao hạ từ B xuống MN ( vì chung đáy MN)
=> S(AND) = S(BND) ( Vì chung đáy ND)
+) Xét tam giác DCN và DAN có chung chiều cao hạ từ D xuống AC; đáy CN = 1/2 đáy AN
=> S DCN = 1/2 S DAN
=> S(DCN) =1/2 S(BND) => S(DCN) = S(BCN) => đáy BC = CD ( vì chung chiều cao hạ từ N xuống BC)
AN = 3/4. AC → NC = 1/4.AC. Từ B hạ BH vuông góc AC
Nối BN ta có S∆BNC = 1/2 .NC.BH = 1/2. 1/4.AC.BH
1/4. 1/2 .AC.BH = 1/4.S∆ABC → S∆BNA = 3/4.S∆ABC
từ N hạ NK vuông góc AB ta có AM = 2/3 AB→ MB = 1/3.AB
S∆BNM = 1/2 .NK.BM= 1/2 .NK.1/3AB = 1/3. S∆BNA
→ S∆BNM = 1/3 . 3/4.S∆ABC = 1/4 S∆ABC
Diện tích tứ giác BMNC = S → S = S∆BNC+S∆BNM =120 cm²
→1/4.S∆ABC + 1/4.S∆ABC = 1/2.S∆ABC = 120 cm²
→ S∆ABC = 240 cm²