K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

a)7/23<11/28

b)2014/2015+2015/2016>2014+2015/2015+2016

c) A= gì vậy

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

6 tháng 8 2017

1.

a) 5/8 x 4/10 + 2/3 =

= 1/4+ 2/3 = 11/12

b)5/12 x 4/7+5/12 x3/7

=5/12 x (4/7 +3/7)

=5/12 x1 = 5/12

c)(4/5 + 3/10 - 1/5 ) x 6 : 4/7

= ( 8/10 + 3/10 + 2/10) x 6 x 7/4

=13/10 x 21/2

=273/20

2.

5/8 và 3/2

ta có 5/8 =10/16    ;        3/2 =24 /16 

vì 24 /16 >10 /16 nên 3/2 > 5/8

b. tương tự như câu a nha

c 418/417 và 925 /926

418/417 > 1     ; 925 /926 < 1

vì 418 /417 >1 mà 925/926 < 1 nên 418 / 417 > 925 /926

chúc bạn học tốt nha !

7 tháng 8 2017

mình làm sai chỗ nào à

12 tháng 2 2018

Vì \(\frac{10^{2014}+1}{10^{2015}+1}< 1\Rightarrow B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}\)

\(\Rightarrow B< \frac{10^{2014}+10}{10^{2015}+10}\)

\(\Rightarrow B< \frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}\)

\(\Rightarrow B< \frac{10^{2013}+1}{10^{2014}+1}\)

\(\Rightarrow B< A\)

Vậy A > B

12 tháng 2 2018

Các bn giúp mình vơi mình đang cần lắm 

19 tháng 6 2015

đặt A=\(\frac{10^{2011}+10}{10^{2012}+10}\)

=>10A=\(\frac{10\left(10^{2011}+10\right)}{10^{2012}+10}=\frac{10^{2012}+100}{10^{2012}+10}=\frac{10^{2012}+10}{10^{2012}+10}+\frac{90}{10^{2012}+10}=1+\frac{90}{10^{2012}+10}\)

đặt B=\(\frac{10^{2012}-10}{10^{2013}-10}\)

=>10B=\(\frac{10\left(10^{2012}-10\right)}{10^{2013}-10}=\frac{10^{2013}-100}{10^{2013}-10}=\frac{10^{2013}-10}{10^{2013}-10}+\frac{-90}{10^{2013}-10}=1+\frac{-90}{10^{2013}-10}\)

vì \(\frac{-90}{10^{2013}-10}\) luôn âm nên 

\(1+\frac{90}{10^{2012}+10}>1+\frac{-90}{10^{2013}-10}\)

vậy \(A>Bhay\frac{10^{2011}+10}{10^{2012}+10}>\frac{10^{2012}-10}{10^{2013}-10}\)

dễ mà cũng hỏi à mình học lớp 4 đó

23 tháng 6 2017

1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)

\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)

\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)

\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)

2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)

\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)

Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)

3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)

Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)