A=1*2+2*3+...+100*101
B=1*3+2*4+...+100*102
Tính B-A= ????????
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
a)Ta có :
\(A=\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+............+\dfrac{1}{4^{100}}\)
\(4A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+..........+\dfrac{1}{4^{99}}\)
\(4A-A=\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{99}}\right)-\left(\dfrac{1}{4}+\dfrac{1}{4^2}+.....+\dfrac{1}{4^{100}}\right)\)
\(3A=1-\dfrac{1}{4^{100}}\)
\(\Rightarrow A=\dfrac{1-\dfrac{1}{4^{100}}}{3}\)
~ Chúc bn học tốt ~
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
a) A = -1 - 2 - 3 - 4 - ... - 100
A = - ( 1 + 2 + 3 + 4 + ... + 100 )
A = -5050 ( tính dãy số cách đều )
b) B = 1-2 + 3-4 + 5-6 + ... -100
B = ( 1-2 ) + ( 3-4 ) + ( 5-6 ) + ... + ( 99 - 100 )
B = ( -1 ) + ( -1 ) + ( -1 ) + ... + ( -1 )
B = ( -1 ) . 50
B = -50
B-A=(1*3-1*2)+(2*4-2*3)+...+(100*102-100*101)
B-A=1+2+...+100
B-A=5050