K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2015

Áp dụng bất đẳng thức Cosi, ta có: 
1/x + 36x ≥ 2.√(1/x . 36x) = 12 (đẳng thức xảy ra khi 1/x = 36x hay x = 1/6) (1)
4/y + 36y ≥ 24 (đẳng thức xảy ra khi 4/y = 36y hay y = 1/3) (2)
9/z + 36z ≥ 36 (đẳng thức xảy ra khi 9/z = 36z hay z = 1/2) (3)
Cộng vế 3 bất đẳng thức (1),(2),(3) lại được: 
1/x + 4/y + 9/z + 36(x + y + z) ≥ 12+24+36=72
<=> 1/x + 4/y + 9/z ≥ 72 - 36(x + y + z) = 36 (vì x + y + z = 1) 
Vậy GTNN S = 36 khi x = 1/6; y = 1/3; z = 1/2

Đúng thì tick nhé !

17 tháng 11 2017

mk ko bt

11 tháng 12 2016

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

6 tháng 6 2018

câu 1

x^2 -5x +y^2+xy -4y +2014 

=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010

=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007

=(y+1/2x-2)^2 +3/4(x-2)^2 +2007

GTNN là 2007<=> x=2 và y=1

8 tháng 6 2020

Áp dụng bđt Cauchy-schwarz ta có:

\(\frac{4}{x+1}+\frac{9}{y+2}+\frac{25}{z+3}\ge\frac{\left(2+3+5\right)^2}{x+1+y+2+z+3}=\frac{10^2}{4+6}=10\)

Dấu "=" \(\Leftrightarrow\frac{2}{x+1}=\frac{3}{y+2}=\frac{5}{z+3}\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)

31 tháng 5 2018

Ta có: \(P=\frac{4}{x}+\frac{9}{y}+\frac{16}{z}=\frac{2^2}{x}+\frac{3^2}{y}+\frac{4^2}{z}\)

Áp dụng bất đẳng thức Swarchz cho 3 số:

\(\Rightarrow P\ge\frac{\left(2+3+4\right)^2}{x+y+z}=\frac{81}{x+y+z}\)

Thay \(x+y+z=6\Rightarrow P\ge\frac{81}{6}=\frac{27}{2}\)

\(\Rightarrow Min_P=\frac{27}{2}.\)Dấu "=" xảy ra khi \(x=y=z=2\).

31 tháng 5 2018

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{4}{3};y=2;z=\frac{8}{3}\)

19 tháng 10 2019

\(A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

A=1+y/x+z/x+x/y+1+z/y+x/z+y/z+1

A=3+(x/y+y/x)+(x/z+z/x)+(y/z+z/y)

với x,y,z > 0 Áp dụng BDT cauchy ta có

\(\hept{\begin{cases}\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\\\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\\\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\end{cases}}\)

=> A\(\ge\)3+2+2+2=9

( Dấu "=" xảy ra <=> x=y=z )

Vậy GTNN của A là 9 <=> x=y=z

2 tháng 7 2018

Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :

\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\)\(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)

\(P_{MIN}=196."="\)\(x=y=z=\dfrac{1}{3}\)

2 tháng 7 2018

bunhia đc k bn