tìm hai số tự nhiên khác nhau a và b sao cho a^b=b^a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(64a=80b=96c\)
\(\Leftrightarrow4a=5b=6c\) (Chia các vế cho 16)
Đặt \(m=4a=5b=6c\) thì m là số tự nhiên và m chia hết cho 4, 5, 6. Để a, b, c nhỏ nhất thì m cũng nhỏ nhất.
=> m là BCNN(4;5;6)
\(4=2^2\)
\(5=5\)
\(6=2.3\)
=> \(BCNN\left(4;5;6\right)=2^2.3.5=60\)
=> m = 60 = 4a = 5b = 6c
=> a = 15
b = 12
c = 10
b) Gọi d = ƯC(7n + 10, 5n +7)
=> 7n + 10 chia hết cho d
5n + 7 chia hết cho d
=> 5(7n +10) - 7(5n + 7) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là nguyên tố cùng nhau.
2.
Vì 0<a<b<c nên tổng 2 số nhỏ nhất trong tập hợp A là
(abc)+(acb)=(100a+10b+c)+(100a+10c+b)
=200a+11b+11c=200a+11(b+c).
Vậy 200a+11(b+c)=488 (*)
Từ (*) =>a<3 =>a chỉ có thể là 1 hoặc 2
+Nếu a=1 =>11(b+c)=288 => vô nghiệm vì b+c=288/11 không nguyên
+Nếu a=2 =>11(b+c)=88 =>b=3; c=5 (vì a<b<c)
=>a+b+c=2+3+5 = 10.
Giả sử a>b>c>d thì số lớn nhất là abcd, nhỏ nhất là dcba
abcd
+ dcba
---------------------------
11330
Đối chiếu cột đầu với cuối ta thấy a+d=10 ( nhớ 1 là bằng 11, cột đầu đó )
c+b=12
a+b+c+d=12+10=22
giả sử a > b> c > d khi đó ta có số tự nhiên lớn nhất là abcd và số tự nhiên nhỏ nhất là dcba => abcd + dcba = 11330 suy ra ta có a + d = 10 và b+ c =12 vậy a+b+c+d = 10+12 = 22
giả sử a > b> c > d
khi đó ta có số tự nhiên lớn nhất là abcd và số tự nhiên nhỏ nhất là dcba
=> abcd + dcba = 11330
suy ra ta có a + d = 10 và b+ c =12
vậy a+b+c+d = 10+12 = 22
a=4, b=2 vì 4^2=16, 2^4=16
Ta có ab=ba=16
Ta lại có 16=24=(-2)4=42=(-4)2
Vì 24=42
=> a=2 hoặc 4
b=4 hoặc 2