Bài 1 : Tìm a thuộc N để : ( Trình bày rõ 2 ý => 2likes )
a, \(\frac{2a-3}{1}\)có GTNN
b, \(\frac{2016}{x-99}\)có GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=-9x2+24x+1=-9x2+24x-16+17
=-9x2+12x+12x-16+17
=-3x.(3x-4)+4.(3x-4)+17
=(3x-4)(-3x+4)+17
=-(3x-4)(3x-4)+17
=-(3x-4)2+17 \(\le\) 17 (với mọi x)
Dấu "=" xảy ra khi x=4/3
Vậy GTLN của A là 17 tại x=4/3
Câu b đề phải là tìm GTLN chứ nhỉ
Ta có: x2-5x+7= \(x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}=x.\left(x-\frac{5}{2}\right)-\frac{5}{2}.\left(x-\frac{5}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{5}{2}\right)\left(x-\frac{5}{2}\right)+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)(với mọi x)
=>\(B=\frac{2016}{x^2-5x+7}\le\frac{2016}{\frac{3}{4}}=2688\)(với mọi x)
Dấu "=" xảy ra khi x=5/2
Vậy GTLN của B là 2688 tại x=5/2
super easy . tập làm đi cho não có nếp nhăn Giang ơi :)
Mik làm bài 3 nha
Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì
\(x^2-6x+17\)đạt GTNN
Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ
Suy ra \(x^2-6x+17\ge17\)
Suy ra \(x^2-6x+17\)đạt GTNN khi
\(x^2-6x+17=17\)
\(\Leftrightarrow x^2-6x=0\)
Dấu ''='' xảy ra khi:
\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Câu cuôi tương tự
\(a)\) Để A đạt GTLN thì \(6-x>0\) và đạt GTNN
\(\Rightarrow\)\(6-x=1\)
\(\Rightarrow\)\(x=5\)
Suy ra : \(A=\frac{2}{6-x}=\frac{2}{6-5}=\frac{2}{1}=2\)
Vậy \(A_{max}=2\) khi \(x=5\)
Chúc bạn học tốt ~
1/ \(-9a^2+a+5=-\left(\left(3a\right)^2+2\cdot a\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}\right)=-\left(3a+\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy GTLN của biểu thức bằng -19/4
Dấu "=" xảy ra \(\Leftrightarrow\left(3a+2\right)^2=0\Leftrightarrow3a+2=0\Leftrightarrow a=-\frac{2}{3}\)
2/ \(2a^2+2ab+b^2+2a+5=a^2+2ab+b^2+a^2+2a+5=\left(a+b\right)^2+\left(a^2+2a+1\right)+4=\left(a+b\right)^2+\left(a+1\right)^2+4=0\ge4\)
Vậy GTNN của biểu thứ bằng 4
Dấu "=" xảy ra \(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2=0\Leftrightarrow a+b+a+1=0\Leftrightarrow2a+b+1=0\Leftrightarrow2a=-1-b\Leftrightarrow a=-\frac{1+b}{2}\)
2/\(ĐKXĐ:x\ne-1\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{2\left(x+1\right)^2-4\left(x+1\right)+4}{\left(x+1\right)^2}\)
\(=2-\frac{4}{x+1}+\frac{4}{\left(x+1\right)^2}\)
Đặt \(\frac{2}{x+1}=t\)
\(\Rightarrow Q=t^2-2t+2=\left(t-1\right)^2+1\ge1\forall t\)
\(\Rightarrow minQ=1\Leftrightarrow t=1\)
\(\Leftrightarrow\frac{2}{x+1}=1\)
\(\Leftrightarrow x=1\left(tmđkxđ\right)\)
Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)
=> \(A\le\frac{2019}{2.2+2016}=\frac{2019}{2020}\)
Dấu "=" xảy ra <=> a = b = 1