K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

b: Xét tứ giác MPNQ có

O là trung điểm của MN

O là trung điểm của PQ

Do đó: MPNQ là hình bình hành

Suy ra MQ//PN

19 tháng 11 2021

a) Xét \(\Delta MOQ\) và \(\Delta NOP\) có:

\(OM=ON\)(O là trung điểm MN)

\(\widehat{MOQ}=\widehat{NOP}\) (đối đỉnh)

\(OP=OQ\) (O là trung điểm PQ)

\(\Rightarrow\Delta MOQ=\Delta NOP\left(c.g.c\right)\)

b) Xét \(\Delta MDO\) và \(\Delta NEO\) có:

\(MD=NE\left(gt\right)\)

\(\widehat{DMO}=\widehat{ONE}\left(\Delta MOQ=\Delta NOP\right)\)

\(OM=ON\) (O là trung điểm MN)

\(\Rightarrow\Delta MDO=\Delta NEO\left(c.g.c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}OD=OE\\\widehat{DOM}=\widehat{EON}\end{matrix}\right.\)

Ta có: \(\widehat{DOM}=\widehat{EON}\left(cmt\right)\)

Mà \(\widehat{EON}+\widehat{MOE}=180^0\)(kề bù)

\(\Rightarrow\widehat{DOM}+\widehat{MOE}=180^0\Rightarrow\widehat{DOE}=180^0\)

\(\Rightarrow D,O,E\) thẳng hàng

Mà \(OD=OE\left(cmt\right)\)

=> O là trung điểm DE

18 tháng 12 2016

Ta có hình vẽ sau:

 

M P Q N I A R

a/ Xét ΔAMQ và ΔANP có:

AM = AN (gt)

\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)

AQ = AP (gt)

=> ΔAMQ = ΔANP (c.g.c) (đpcm)

b/ Vì ΔAMQ = ANP (ý a)

=> \(\widehat{QMA}=\widehat{PNA}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> MQ // PN (đpcm)

c/+) Xét ΔAMI và ΔANR có:

\(\widehat{MAI}=\widehat{NAR}\) (đối đỉnh)

AM = AN(gt)

\(\widehat{AMI}=\widehat{RNA}\) (so le trong do MQ // PN (ý b))

=> ΔAMI = ΔANR (g.c.g)

=> MI = NR (1)

+) CM tương tự ta có:

ΔAQI = ΔAPR (g.c.g)

=> QI = PR (2)

Từ (1); (2) và I là trung điểm của MQ

=> RP = RN (đpcm)

18 tháng 12 2016

giúp mình với!!!!!!!!!
 

22 tháng 2 2018

A I M N P R N

a) Xét \(\Delta AMQ,\Delta ANP\) có :

\(AM=AN\) (A là trung điểm của MN)

\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)

\(AQ=AP\) (A là trung điểm của QP)

=> \(\Delta AMQ=\Delta ANP\left(c.g.c\right)\) (*)

b) Từ (*) suy ra : \(\left\{{}\begin{matrix}\widehat{MQA}=\widehat{NPA}\\\widehat{QMA}=\widehat{PNA}\end{matrix}\right.\) (2 góc tương ứng)

Mà thấy : Mỗi cặp góc bằng nhau ở vị trí so le trong

=> \(MQ//PN\left(đpcm\right)\)

c) Ta có : \(MQ=PN\) [từ (*)]

Lại có : \(IM=IQ\) (I là trung điểm của MQ)

Suy ra : \(RP=RN\rightarrowđpcm\)

a: Xét ΔHPQ vuông tại Q và ΔHPO vuông tại O có

HP chung

\(\widehat{QHP}=\widehat{OHP}\)

Do đó: ΔHPQ=ΔHPO

b: Xét ΔOPE vuông tại O và ΔQPK vuông tại Q có 

PQ=PK

\(\widehat{KPQ}=\widehat{EPO}\)

Do đó: ΔOPE=ΔQPK

Suy ra: EO=KQ

Ta có: EO+OH=EH

KQ+QH=KH

mà EO=KQ

và OH=QH

nên EH=KH

Bài 2:

b: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

K là trung điểm của GB

I là trung điểm của GC

Do đó: KI là đường trung bình của ΔGBC

Suy ra: KI//BC và \(KI=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra NM//KI và NM=KI

Xét tứ giác NMIK có 

NM//KI

NM=KI

Do đó: NMIK là hình bình hành

10 tháng 12 2018

mình không vẽ hình được, sorry bạn nhé

ΔMPO và ΔQNO có

O1=O2 (đối đỉnh)

MO= OQ (gt)

PO= QN (gt)

⇒ ΔMOP= ΔQNO (c.g.c)

⇒ MP= QN (hai cạnh tương ứng)

ΔMQO vàΔPNO có

MO= OQ (gt)

PO= QN (gt)

O3= O4 (đối đỉnh)

⇒ΔMQO=ΔPNO(c.g.c)

⇒MQ=PN(2 cạnh tương ứng)