bài 4 chứng minh rằng cá phân số sau đây tối giản với mọi n thuộc Z
a) 21n = 4 phần 14n + 3
b)21n + 1 phần 2n ( n = 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải
gọi d ưcln {21n+4 và 14 n+3} =>
(21n+4) chia hết cho d=> [2.(21n+4)] chia hết cho d =>(42n+8)chia hết cho d(1)
(14n+3)chia hết cho d=> [3.(14n+3)] chia hết cho d => (42n+9)chia hết cho d(2)
từ 1 và 2 => [(42n+9)-(42n+8)] chia hết cho d => (42n+9-42n-8)chia hết cho d => [(42n_42n) +(9-8)] chia hết cho d => 1 chia hết cho d => d =1 mà d lại là ưcln {21n+4 và 14n+3)(n thuộc N)
vậy biểu thức đã được chứng minh
1. goi UCLN ( n + 1; 2n + 3 ) la d ( d thuoc N ), ta co:
*n + 1 chia het cho d
*2n + 3 chia hết cho d
suy ra:
*( n + 1 ) x 2 chia het cho d
*2n + 3 chia hết cho d
suy ra:
*2n + 2 chia hết cho d
*2n + 3 chia hết cho d
suy ra:
*( 2n + 3 ) - (2n + 2 ) chia het cho d
suy ra:
1 chia hết cho d, vì d thuộc N suy ra: d=1
suy ra : UCLN( n + 1; 2n + 3 ) = 1
suy ra : n + 1 trên 2n + 3 toi gian
các câu sau cứ thế mà lm...............
Chứng minh từng cái 1 bạn nhé chứ không phải chứng minh tất đâu
Gọi d là ƯCLN ( n + 1 ; 2n + 3 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )
=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d
=> 1 ⋮ d => d = + 1
Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên \(\frac{n+1}{2n+3}\) là p/s tối giản
Các câu khác làm tương tự