K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Lời giải:

Trước khi $a$ là số nguyên tố thì $a$ cần là số nguyên.

Để $a$ nguyên thì với $n\in\mathbb{N}$, ta có:

$n+8\vdots 2n-5$

$\Rightarrow 2(n+8)\vdots 2n-5$
$\Rightarrow (2n-5)+21\vdots 2n-5$

$\Rightarrow 21\vdots 2n-5$

$\Rightarrow 2n-5\in\left\{\pm 1; \pm 3; \pm 7; \pm 21\right\}$

$\Rightarrow n\in \left\{3; 2; 4; 1; 6; -1; 13; -8\right\}$

Do $n$ tự nhiên nên $n\in \left\{3; 2; 4; 1; 6; 13\right\}$
Thử lần lượt các giá trị $n$ vào $a$ ta được:

$n\in\left\{3; 6\right\}$ thỏa mãn 

12 tháng 10 2017

TỚ CŨNG KHÔNG BIẾT.

CẬU BIẾT HOÁ GIẢI CÚ NÉM ZIC ZẮC KÉP WWW CỦA SHIROEMON KHÔNG ?

9 tháng 8 2017

Ta có: A> / x-1+5-x/

A>hoặc =/ 4/

Min A= 4 đạt đc khi x-1 và 5-x cùng dấu

th1: Nếu \(\hept{\begin{cases}x-1>0\\5-x>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>=2\\x< =5\end{cases}}\)( lớn ( bé) hơn hoặc =)

\(\Rightarrow x\in1,2,3,4,5\)

th2: Nếu \(\hept{\begin{cases}x-1< 0\\5-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>5\end{cases}}}\)

\(\Rightarrow x\in\)rỗng

Vậy...........

9 tháng 8 2017

B= /x+1/+ /x-8/

Ta có: x-8 và 8-x là 2 số đối nhau \(\Rightarrow\)/x-8/=/8-x/

\(\Rightarrow\)B= /x+1/+/8-x/

B > /x+1+8-x/

B >=9

Min 9 đạt đc khi x+1 và 8-x cùng dấu.

th1: Nếu \(\hept{\begin{cases}x+1>0\\8-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>=-1\\x< =8\end{cases}}}\)

\(\Rightarrow x\in-1,0,1,2,3,4,5,6,7,8\)

th2: Nếu \(\hept{\begin{cases}x+1< 0\\8-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< =-1\\x>=-8\end{cases}}}\)

\(\Rightarrow x\in\)rỗng

3 tháng 8 2018

Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)

\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)

\(\Leftrightarrow15n+21=5n-15\)

\(\Leftrightarrow15n-5x=-15-21\)

\(\Leftrightarrow10n=-36\)

\(\Leftrightarrow n=-\frac{18}{5}\)

3 tháng 8 2018

\(b,A\inℕ\Rightarrow5n+7⋮n-3\)

\(\Rightarrow5n-15+22⋮n-3\)

\(\Rightarrow5(n-3)+22⋮n-3\)

\(\Rightarrow22⋮n-3\)

\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)

bạn tự vẽ bảng