K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

Ta có D = 3+ 32+ 33+ ...+ 3101

               = 3+ 32+ 32* 3+ 34+ 34* 3+ ... + 3100+ 3100* 3

             = 3+ 32(1+3)+34(1+3)+ ... + 3100(1+3)

             = 3+ 32* 4+ 34* 4+ ... + 3100 * 4

             = 3+ 4( 32+ 34+ ... + 3100)

mà 4( 32+34+...+3100) chia hết cho 4 => D chia cho 4 dư 3

30 tháng 10 2023

\(A=1+3+3^2+3^3+...+3^{2022}\)

\(=1+\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)

\(=1+3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2020}\left(1+3+3^2\right)\)

\(=1+13\left(3+3^4+...+3^{2020}\right)\)

=>A chia 13 dư 1

30 tháng 10 2023

Bạn ơi, bạn cũng xem lại giúp mình luôn nha

2020 đâu có chia hết cho 3

Với lại dãy này có 2023 số đó bạn, 2023 cũng đâu chia hết cho 3 đâu

21 tháng 12 2018

Bạn ko biết gõ số mũ à gõ thế này bố ai mà hiểu được

22 tháng 12 2021

Lồn bâm

22 tháng 12 2021

Gâu gâu 

1 tháng 1 2018

\(M=1+3+3^2+............+3^{100}\)

\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)

\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)

\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)

\(13\left(3^2+3^5+......+3^{98}\right)⋮13\)

\(4:13\left(dư4\right)\)

\(\Leftrightarrow M:13\left(dư4\right)\)

b, tương tự

1 tháng 1 2018

Bạn ơi mik vẫn chưa hiểu M=4+\(3^2\)+.....(mik chỉ viết ngắn gọn hoy) thì 4 bạn lấy ở đâu ra,rõ ràng đầu bài chỉ cho 1 thui mak

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

23 tháng 12 2023

B=3+3²+3³+..... +3¹00 

B=3²+3³+3⁴+... 3¹00+3

B=3²(1+3+3²) +... +3 98(1+3+3²) +3

B=3²•13+... +3 98•13+3

=) 3²•13+3 98•13 chia hết cho 13

=) Số dư là 3

 

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

A=[1+3+3^2+3^3]+...+[3^2018+3^2019+3^2020+3^2021]

A=1 nhân[1+3+3^2+3^3]+...+3^2018 nhân [1+3+3^2+3^3]

A=[1+3+3^2+3^3] NHÂN[1+...+3^2018

A=40 nhân [1+...+3^2018]

=> A chia hết cho 40

7 tháng 12 2023

           B = 3 + 32 + 33 + 34 + ... + 3100

           B = 31 + 32 + 33 + 34+... + 3100

Xét dãy số: 1; 2; 3; 4; ...; 100 dãy số này là dãy số cách đều với khoảng cách là:

                     2   - 1  = 1

Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100.

Vậy B có 100 hạng tử, vì 100 : 3  = 33 dư 1 

Nên nhóm 3 hạng tử liên tiếp của B lại thành một nhóm ta được 

B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3

B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.( 32 + 3 + 1) + 3

B = 398. 13 + 395.13 + ... + 32.13 + 3

B = 13.(398 + 395 + ... + 32) + 3

Vì: 13. (398 + 395 + ... + 32) ⋮ 13 

⇒ B : 13 dư 3