Hai vòi nước chảy cùng vào 1 bể không có nước sau 6 giờ thì đầy bể. Nếu vòi 1 chảy vào trong 3 giờ, vòi 2 chảy trong 2 giờ thì được 2/5 bể . Tính thời gian mỗi vòi chảy 1 mình đầy bể
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi 1,vòi 2 chảy một mình đầy bể lần lượt là x,y
Theo đề, ta có: 1/x+1/y=1/4,8 và 4/x+3/y=3/4
=>x=8; y=12
Lời giải:
Đổi 20 phút = $\frac{1}{3}$ giờ; 30 phút = $\frac{1}{2}$ giờ
Giả sử vòi 1 và vòi 2 chảy 1 mình thì sau tương ứng $a,b$ giờ thì đầy bể
Khi đó, trong 1 giờ thì:
Vòi 1 chảy $\frac{1}{a}$ bể; vòi 2 chảy $\frac{1}{b}$ bể
Theo bài ra ta có: \(\left\{\begin{matrix} \frac{3}{a}+\frac{3}{b}=1\\ \frac{1}{3a}+\frac{1}{2b}=\frac{1}{8}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{4}\\ \frac{1}{b}=\frac{1}{12}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=4\\ b=12\end{matrix}\right.\)
Vậy......
Theo bài ra ta có tổng vận tốc của 2 vòi là: v1 + v2 = 1/3 (bể)
Lượng nước 2 vòi cùng chảy trong 2 giờ là: 2 x 1/3 = 2/3 (bể)
Lượng nước vòi 2 chảy trong 3 giờ là: 1 - 2/3 = 1/3 (bể)
Vận tốc của vòi 2 là:1/3 : 3 = 1/9 (bể)
Vận tốc của vòi 1 là: 1/3 - 1/9 = 2/9 (bể)
Ai tích tớ, tớ sẽ tích lại
Gọi x(giờ) là thời gian vòi 1 chảy một mình đầy bể
y(giờ) là thời gian vòi 2 chảy một mình đầy bể
(Điều kiện: x>16; y>16)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)
Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{16}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\)(1)
Vì nếu vòi 1 chảy trong 3 giờ và vòi 2 chảy trong 6 giờ thì cả hai vòi chảy được 25% bể nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-3}{y}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}=\dfrac{1}{16}-\dfrac{1}{48}=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi 1 cần 24 giờ để chảy một mình đầy bể
Vòi 2 cần 48 giờ để chảy một mình đầy bể
Gọi thời gian chảy đầy bể vòi 1 là \(x\left(h\right)\)
Gọi thời gian chảy đầy bể vòi 2 là \(y\left(h\right)\)
Một giờ thì vòi 1 chảy được: \(\dfrac{1}{x}\) (bể)
Một giờ thì vòi 2 chảy được: \(\dfrac{1}{y}\) (bể)
Một giờ thì 2 vòi chảy được: \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) bể
Theo đề bài, ta có:
Cả 2 vòi cùng chảy trong 6 giờ thì đầy bể nên mỗi giờ cả hai vòi cùng chảy được \(\dfrac{1}{6}\) nên ta có phương trình:\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\left(1\right)\)
Trong 2 giờ vòi 1 chảy được \(\dfrac{2}{x}\) bể, trong 3 giờ vòi 2 chảy được \(\dfrac{3}{x}\) bể. Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại va mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được \(\dfrac{2}{5}\) bể nên ta có phương trình:\(\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có hệ phương trình:\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow...\left\{{}\begin{matrix}x=10\\y=15\end{matrix}\right.\)
Vậy thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là 10 giờ và 15 giờ.
Cái này thì mình không chắc là đúng hoàn toàn vì có người vẫn ra vòi 1 là 30 giờ. Chúc cậu học tốt ^_^
Thôi chết làm sai rồi