Bài 1: CMR:
a) (304)1975.151870.4935 - (75)1954 chia hết cho 23
b) 4n+15n-10 chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n + 15n – 1 chia hết cho 9
Đặt An = 4n + 15n – 1
với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử đúng với n = k ≥ 1 nghĩa là:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
Ta cần chứng minh: Ak + 1 chia hết 9
Thật vậy, ta có:
Ak + 1 = 4k+1 + 15(k + 1) – 1
= 4.4k + 15k + 15 – 1
= 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1
= 4.(4k +15k- 1) – 45k + 18
= 4. Ak + (- 45k + 18)
Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9
Nên Ak + 1 ⋮ 9
Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4