Cho đường tròn (O:R) có đường kính AB và điểm M thuộc đường tròn (M khác A và B). Gọi Ax, By là các tia vuông góc với AB( Ax,By và M cùng thuộc một mặt phẳng bờ AB). Qua điểm M, kẻ tiếp tuyến với đường tròn (O) cắt Ax, By theo thứ tự ở C và D.
a) chứng minh CD=AC+BD
b)OC cắt AM tại H, OD cắt BM tại K. Chứng minh tứ giác OHMK là hình chữ nhật.
c) Chứng minh: AC.BD= R^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CA,CM là tiếp tuyến
Do đó: CA=CM và OC là phân giác của góc AOM
=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)
Xét (O) có
DM,DB là tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc BOM
=>\(\widehat{BOM}=2\cdot\widehat{MOD}\)
\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
=>OC\(\perp\)OD
b: Xét ΔOCD vuông tại O có OM là đường cao
nên \(MC\cdot MD=OM^2\)
\(\dfrac{AC^2+BD^2}{CD^2}\)
\(=\dfrac{AC^2+\left(3AC\right)^2}{\left(CM+MD\right)^2}\)
\(=\dfrac{10AC^2}{\left(CA+BD\right)^2}\)
\(=\dfrac{10AC^2}{\left(AC+3AC\right)^2}=\dfrac{10}{4^2}=\dfrac{10}{16}=\dfrac{5}{8}\)
1) Vì EM,EA là tiếp tuyến \(\Rightarrow OE\) là phân giác \(\angle MOA\)
\(\Rightarrow\angle MOE=\dfrac{1}{2}\angle MOA\)
Vì FM,FB là tiếp tuyến \(\Rightarrow OF\) là phân giác \(\angle MOB\)
\(\Rightarrow\angle MOF=\dfrac{1}{2}\angle MOB\)
\(\Rightarrow\angle MOE+\angle MOF=\dfrac{1}{2}\left(\angle MOA+\angle MOB\right)=\dfrac{1}{2}.180=90\)
\(\Rightarrow\angle EOF=90\)
2) Ta có: \(\angle EAO+\angle EMO=90+90=180\Rightarrow AEMO\) nội tiếp
\(\Rightarrow\angle MEO=\angle MAO\)
Vì AB là đường kính \(\Rightarrow\angle AMB=90\)
Xét \(\Delta MAB\) và \(\Delta OEF:\) Ta có: \(\left\{{}\begin{matrix}\angle AMB=\angle EOF\\\angle FEO=\angle MAB\end{matrix}\right.\)
\(\Rightarrow\Delta MAB\sim\Delta OEF\left(g-g\right)\)
Vì \(AE\parallel BF(\bot AB)\) \(\Rightarrow\dfrac{BF}{AE}=\dfrac{FK}{AK}\left(1\right)\)
Vì EM,EA là tiếp tuyến \(\Rightarrow EA=EM\left(2\right)\)
Vì FM,FB là tiếp tuyến \(\Rightarrow FB=FM\left(3\right)\)
Thế (2),(3) vào (1) \(\Rightarrow\dfrac{FM}{EM}=\dfrac{FK}{AK}\Rightarrow\) \(MK\parallel AE\) \(\Rightarrow MK\bot AB\)
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA
Xét (O) cso
DM là tiếp tuyến
DB là tiếp tuyến
DO đó: DM=DB
Ta có: CM+MD=CD
mà CM=CA
và MD=DB
nên CD=CA+DB
b: Xét tứ giác DMOB có
\(\widehat{DMO}+\widehat{DBO}=180^0\)
Do đó: DMOB là tứ giác nội tiếp
a: Xét (O) có
CM,CA là các tiếp tuyến
Do đó: OC là phân giác của góc MOA
=>\(\widehat{MOA}=2\cdot\widehat{COM}\)
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
Xét (O) có
CA,CM là tiếp tuyến
Do đó: CA=CM
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB
Ta có: CD=CM+MD
mà CM=CA và DM=DB
nên CD=CA+DB
b: Xét ΔNCA và ΔNBD có
\(\widehat{NCA}=\widehat{NBD}\)(hai góc so le trong, AC//BD)
\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)
Do đó: ΔNCA đồng dạng với ΔNBD
=>\(\dfrac{NC}{NB}=\dfrac{AC}{BD}=\dfrac{CM}{MD}\)
Xét ΔCDB có \(\dfrac{CN}{NB}=\dfrac{CM}{MD}\)
nên MN//BD
a) Xét (O) có
OA là bán kính
CA⊥OA tại A(gt)
Do đó: CA là tiếp tuyến có A là tiếp điểm(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Xét (O) có
OB là bán kính
BD⊥BO tại B(gt)
Do đó: DB là tiếp tuyến có B là tiếp điểm(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Xét (O) có
CA là tiếp tuyến có A là tiếp điểm(cmt)
CM là tiếp tuyến có M là tiếp điểm(gt)
Do đó: CM=CA và OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm(cmt)
DM là tiếp tuyến có M là tiếp điểm(gt)
Do đó: DM=DB và OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)
Ta có: CM+MD=CD(M nằm giữa C và D)
mà CM=CA(cmt)
và MD=DB(cmt)
nên CD=AC+BD(đpcm)
Ta có: OC là tia phân giác của \(\widehat{AOM}\)(cmt)
nên \(\widehat{AOM}=2\cdot\widehat{MOC}\)
Ta có: OD là tia phân giác của \(\widehat{MOB}\)(cmt)
nên \(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù)
mà \(\widehat{AOM}=2\cdot\widehat{MOC}\)(cmt)
và \(\widehat{MOB}=2\cdot\widehat{MOD}\)(cmt)
nên \(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)
\(\Leftrightarrow\widehat{MOC}+\widehat{MOD}=90^0\)
hay \(\widehat{COD}=90^0\)(đpcm)
a: Xét (O) có
CA là tiếp tuyến
CM là tiếp tuyến
Do đó: CA=CM
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
Ta có: MC+MD=DC
nên DC=AC+BD