Cho 8p-1 và p là số nguyên tố.Hỏi 8p+1 là số nguyên tố hay hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
số nguyên tố p phải lớn hơn 2 (vì 2 ko là tổng của 2 snt nào cả) nên là số lẻ.
ta phải có p = a + 2, p = b - 2 (chắc chắn có số 2 vì tất cả các snt lớn hơn 2 đều lẻ).
Suy ra a, p, b là 3 số lẻ liên tiếp, do đó có 1 số chia hết cho 3, suy ra số đó = 3 (vì là snt)
vậy 3 số đó là 3,5,7.
Vậy p = 7
a)
số nguyên tố p phải lớn hơn 2 (vì 2 ko là tổng của 2 snt nào cả) nên là số lẻ.
ta phải có p = a + 2, p = b - 2 (chắc chắn có số 2 vì tất cả các snt lớn hơn 2 đều lẻ).
Suy ra a, p, b là 3 số lẻ liên tiếp, do đó có 1 số chia hết cho 3, suy ra số đó = 3 (vì là snt)
vậy 3 số đó là 3,5,7.
Vậy p = 7
Lời giải:
Nếu $p$ chia hết cho 3 thì $p=3$. Khi đó $8p-1=8.3-1=23$ là snt (thỏa mãn đề).
$8p+1=8.3+1=25$ là hợp số.
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ thì $8p+1=8(3k+1)+1=24k+9$ chia hết cho 3. Mà $8p+1>3$ nên $8p+1$ là hợp số.
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$. Khi đó $8p-1=8(3k+2)-1=24k+15\vdots 3$. Mà $8p-1>3$ nên không là snt (trái với điều kiện đề)
Vậy tóm lại $8p+1$ là hợp số.
Cho p và 8p-1 là số nguyên tố hỏi 8p+1 là hợp số hay số nguyên tố
Toán lớp 6
Bạn tham khảo nhé!
Với p=3 =>8p-1=23 (thỏa mãn)
8p+1=25(loại)
Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3
mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp
Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3
=> 8p+1 chia hết cho 3
mà 8p+1>3
=>8p+1 là hợp số
Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.
TH1: \(p=3\) thì ta có \(8p-1=23\) là số nguyên tố, \(8p+1=25\) là hợp số.
TH2: \(p=3k+1\), ta có \(8p+1=8\left(3k+1\right)+1=24k+9⋮3\)
Vậy trong trường hợp này \(8p-1\) phải là số nguyên tố, còn \(8p+1\) là hợp số.
TH3: \(p=3k+2\), ta có \(8p-1=8\left(3k+2\right)-1=24k+15⋮3\)
Vậy trong trường hợp này \(8p+1\) phải là số nguyên tố, còn \(8p-1\) là hợp số.
Vậy khi \(p\) là số nguyên tố, nếu 1 trong 2 số \(8p-1;8p+1\) là số nguyên tố thì số còn lại là hợp số.
Với p=3 =>8p-1=23 (thỏa mãn)
8p+1=25(loại)
Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3
mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp
Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3
=> 8p+1 chia hết cho 3
mà 8p+1>3
=>8p+1 là hợp số
Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.
p =2 => 8p-1=15 là hợp số , loại
p=3 =>8p-1 =23 là số nguyên tố, chọn =>8p+1=25 là hớp số
p>3=> p có dạng 3k+1, 3k+2( k thuộc N*)
p= 3k+2=> 8p-1=24k + 15, là hợp số=> loại
=> p=3k+1=> 8p+1=24k+9
Vậy 8p+1 là hợp số
Chú ý: thử trường hợp 3k+2 trước để loại