K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

p =2 => 8p-1=15 là hợp số , loại

p=3 =>8p-1 =23 là số nguyên tố, chọn =>8p+1=25 là hớp số

p>3=> p có dạng 3k+1, 3k+2( k thuộc N*)

p= 3k+2=> 8p-1=24k + 15, là hợp số=> loại

=> p=3k+1=> 8p+1=24k+9

Vậy 8p+1 là hợp số

Chú ý: thử trường hợp 3k+2 trước để loại

31 tháng 7 2017

a)

số nguyên tố p phải lớn hơn 2 (vì 2 ko là tổng của 2 snt nào cả) nên là số lẻ.

ta phải có p = a + 2, p = b - 2 (chắc chắn có số 2 vì tất cả các snt lớn hơn 2 đều lẻ).

Suy ra a, p, b là 3 số lẻ liên tiếp, do đó có 1 số chia hết cho 3, suy ra số đó = 3 (vì là snt)

vậy 3 số đó là 3,5,7.

Vậy p = 7

31 tháng 7 2017
    

a)

số nguyên tố p phải lớn hơn 2 (vì 2 ko là tổng của 2 snt nào cả) nên là số lẻ.

ta phải có p = a + 2, p = b - 2 (chắc chắn có số 2 vì tất cả các snt lớn hơn 2 đều lẻ).

Suy ra a, p, b là 3 số lẻ liên tiếp, do đó có 1 số chia hết cho 3, suy ra số đó = 3 (vì là snt)

vậy 3 số đó là 3,5,7.

Vậy p = 7

AH
Akai Haruma
Giáo viên
2 tháng 1

Lời giải:

Nếu $p$ chia hết cho 3 thì $p=3$. Khi đó $8p-1=8.3-1=23$ là snt (thỏa mãn đề).

$8p+1=8.3+1=25$ là hợp số.

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ thì $8p+1=8(3k+1)+1=24k+9$ chia hết cho 3. Mà $8p+1>3$ nên $8p+1$ là hợp số.

Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$. Khi đó $8p-1=8(3k+2)-1=24k+15\vdots 3$. Mà $8p-1>3$ nên không là snt (trái với điều kiện đề)

Vậy tóm lại $8p+1$ là hợp số.

27 tháng 9 2016

Cho p và 8p-1 là số nguyên tố hỏi 8p+1 là hợp số hay số nguyên tố

Toán lớp 6

28 tháng 6 2017

là hợp số

29 tháng 6 2017

bn Lưu Dung có thể tra lời cụ thể đc ko vậy!!!!!!!!!!!

10 tháng 4 2022

Bạn tham khảo nhé!

Với p=3 =>8p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số 

Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.

11 tháng 4 2022

TH1: \(p=3\) thì ta có \(8p-1=23\) là số nguyên tố, \(8p+1=25\) là hợp số.

TH2: \(p=3k+1\), ta có \(8p+1=8\left(3k+1\right)+1=24k+9⋮3\)

Vậy trong trường hợp này \(8p-1\) phải là số nguyên tố, còn \(8p+1\) là hợp số.

TH3: \(p=3k+2\), ta có \(8p-1=8\left(3k+2\right)-1=24k+15⋮3\)

Vậy trong trường hợp này \(8p+1\) phải là số nguyên tố, còn \(8p-1\) là hợp số.

Vậy khi \(p\) là số nguyên tố, nếu 1 trong 2 số \(8p-1;8p+1\) là số nguyên tố thì số còn lại là hợp số.

15 tháng 10 2015

Với p=3 =>8p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số 

Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.