Cho A=1/2!+2/3!+3/4!+...+2015/2016!
Chung minh :A<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.2!+2/3!+...đều là tổng các phân số có tử là 1. 1/2!=1/2
2/3!=1/3; 3/4!=1/8 .... nên tổng A bé hơn 1
Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\); \(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)< \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)= \(\dfrac{2015}{2016}\) (ĐCPCM)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(A< 1-\frac{1}{2016}\)
\(A< \frac{2015}{2016}\left(đpcm\right)\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(\Rightarrow A< \frac{2015}{2016}\)