Cho 2 dường thẳng y = ax + b (a khác 0) (d) và y = a'x + b' (a' khác 0) (d')
A. (d) // (d') khi và chỉ khi a # a'.
B. (d) // (d') khi và chỉ khi a = a' và b # b'.
C. (d) // (d') khi và chỉ khi a = a' và b = b'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đường thẳng d song song hoặc trùng với đường thẳng d1 : y = ax; đường thẳng d': y = a'x + b' song song hoặc trùng với đường thẳng d2 :
y = a'x nên Nếu d vuông góc với d' thì d1 vuông góc với d2
Nhận xét: d1 và d2 đều đi qua gốc O mà d1 vuông góc với d2 nên có 1 đường thẳng nằm trong góc phần tư thứ I và III ( giả sử là d1) ; đường thẳng còn lại nằm trong góc phần tư thứ II và IV . => a > 0 và a' < 0
O y x d 1 d 2 H A B
Lấy H (1; 0). Qua H kẻ đường vuông góc với Ox cắt d1; d2 lần lượt tại B ; A
=> xA = xB = 1
A thuộc d2 => yA = a' ; B thuộc d1 => yB = a
=> HA = |a'|; HB = |a|
Áp dụng hệ thức lượng trong tam giác vuông AOB có: OH2 = HA . HB => 1 = |a|. |a'| => |a.a'| = 1 => a.a' = - 1 ( Vì a;a' trái dấu nên a.a' < 0)
Vậy....
a: Thay x=1 và y=2 vào y=ax2, ta được:
\(a\cdot1^2=2\)
hay a=2
c: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x^2-2x-4=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(2;8\right);\left(-1;2\right)\right\}\)
ta có pt hoảnh độ giao điểm: \(ax^2=x-1\Leftrightarrow ax^2-x+1=0\)
P tiếp xúc d <=> PT trên có nghiệm kép <=> \(\Delta=0\Leftrightarrow1-4a=0\Leftrightarrow a=\frac{1}{4}\)
a: Vì (d) đi qua A(1;2) và B(4;5) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\4a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-3\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Chọn B