Kết quả của phép tính
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+........+\frac{1}{768}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}\frac{{ - 3}}{4}.\left( {\frac{2}{3} - \frac{2}{6}} \right) = \frac{{ - 3}}{4}.\left( {\frac{4}{6} - \frac{2}{6}} \right)\\ = \frac{{ - 3}}{4}.\frac{2}{6} = \frac{{ - 6}}{{24}} = \frac{{ - 1}}{4}\end{array}\)
=> Chọn D.
Đặt A=4+6+8+...+2012
Số số hạng của dãy là: (2012-4)\(\div\)2+1=1005
Tổng A=(2012+4)\(\times\)1005\(\div\)2=1013040
\(\Rightarrow\)1013040\(\times\frac{1}{1000}\times\left(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}\right)=\) 1013040\(\times\frac{1}{1000}\times\frac{25}{12}=\)\(\frac{4221}{2}\)=2110,5
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(\frac{9}{10}\)
\(\frac{1}{2}\)+ \(\frac{1}{6}\)+ \(\frac{1}{12}\)+ \(\frac{1}{20}\)+ \(\frac{1}{30}\)+ ........ + \(\frac{1}{90}\)
= \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ \(\frac{1}{4.5}\)+ \(\frac{1}{5.6}\)+ ....... + \(\frac{1}{9.10}\)
= \(\frac{2-1}{1.2}\)+ \(\frac{3-2}{2.3}\)+ \(\frac{4-3}{3.4}\)+ \(\frac{5-4}{4.5}\)+ \(\frac{6-5}{5.6}\)+ ......... + \(\frac{10-9}{9.10}\)
= \(\frac{2}{1.2}\)- \(\frac{1}{1.2}\)+ \(\frac{3}{2.3}\)- \(\frac{2}{2.3}\)+ \(\frac{4}{3.4}\)- \(\frac{3}{3.4}\)+ \(\frac{5}{4.5}\)- \(\frac{4}{4.5}\)+ \(\frac{6}{5.6}\)- \(\frac{5}{5.6}\)+ ........ + \(\frac{10}{9.10}\)- \(\frac{9}{9.10}\)
= 1 - \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{6}\)+ ........... + \(\frac{1}{9}\)- \(\frac{1}{10}\)
Sau đó ta trực tiêu:
= 1 - \(\frac{1}{10}\)
= \(\frac{9}{10}\)
reititiruit
ty từ tổ