Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{1536}+\frac{1}{3072}\)
\(=\frac{2}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+\frac{1}{12}-\frac{1}{24}+...+\frac{1}{1536}-\frac{1}{3072}\)
\(=\frac{2}{3}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{12}-\frac{1}{12}\right)+...+\left(\frac{1}{1536}-\frac{1}{1536}\right)-\frac{1}{3072}\)
\(=\frac{2}{3}-\frac{1}{3072}\)
\(=\frac{2047}{3072}\)
Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{96}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+.....+\frac{1}{192}\)
\(\Rightarrow A-\frac{1}{2}A=\frac{1}{3}-\frac{1}{192}\)
\(\Rightarrow\frac{1}{2}A=\frac{21}{64}\)
\(\Rightarrow A=\frac{21}{64}.2=\frac{21}{32}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
\(A+\frac{1}{96}=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{96}\)
\(A+\frac{1}{96}=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{48}\)
\(A+\frac{1}{96}=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{24}\)
...
\(A+\frac{1}{96}=\frac{1}{3}+\frac{1}{3}\Rightarrow A=\frac{2}{3}-\frac{1}{96}=\frac{2\cdot32-1}{96}=\frac{63}{96}=\frac{21}{32}\).
cái a bằng 1962
cái b bằng 127/192
à quên mình chưa rút gọn phân số đấy đâu bạn ạ
ban rút gọn phân số đấy hộ mình nha
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
Dễ dàng nhận thấy dãy số từ 1/3; 1/6... đến n=9 là một cấp số nhân có tổng Sn=1/3x((1/2^9)-1)/(1/2-1)=511/768
Vậy tổng của 10 số hạng đầu tiên của dãy số là: 1+ 511/768=1279/768