K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

a) x ≠ -5.

b) Ta có P = ( x + 5 ) 2 x + 5 = x + 5  

c) Ta có P = 1 Û x = -4 (TMĐK)

d) Ta có P = 0 Û x = -5 (loại). Do vậy x ∈ ∅ .

10 tháng 12 2018

a, ĐKXĐ \(x^2-4\ne0\)

        \(\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\)

          \(\Leftrightarrow\orbr{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\)

        \(\Leftrightarrow\orbr{\begin{cases}X\ne2\\X\ne-2\end{cases}}\)

=> \(X\ne\pm2\)

Vậy \(X\ne\pm2\)

b,  Rút gọn

         A= \(\frac{x^2-4x+4}{x^2-4}\)           ĐKXĐ:  \(X\ne\pm2\)

<=> A= \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

<=> A= \(\frac{x-2}{x+2}\)

Vậy A= \(\frac{x-2}{x+2}\) với \(X\ne\pm2\)

Hết r............

Thông cảm

10 tháng 12 2018

a, \(ĐKXĐ:x^2-4\ne0\Rightarrow x\ne\pm2\)

b,Đặt  \(A=\frac{x^2-4x+4}{x^2-4}\)

\(=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

c, \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\) (thỏa mãn ĐKXĐ)

Với x = 3 thì \(A=\frac{3-2}{3+2}=\frac{1}{5}\)

Với x = -3 thì \(A=\frac{-3-2}{-3+2}=5\)

d, \(A< 2\Rightarrow\frac{x-2}{x+2}< 2\Rightarrow x-2< 2x+4\Rightarrow-2-4< 2x-x\Rightarrow x>-6\)

21 tháng 12 2022

`a)ĐKXĐ` của `D` la `x+2 \ne 0<=>x \ne -2`

`b)` Với `x \ne -2` có: `D=[2x^2-4x+8]/[x^3+8]`

                                `D=[2(x^2-2x+4)]/[(x+2)(x^2-2x+4)]=2/[x+2]`

`c)` Thay `x=2` vào `D` có: `D=2/[2+2]=1/2`

`d)D > 2<=>2/[x+2] > 2`

         `<=>[2-2x-4]/[x+2] > 0`

         `<=>[x+1]/[x+2] < 0<=>-2 < x <= -1`

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

a. ĐKXĐ: $x^2-16\neq 0\Leftrightarrow (x-4)(x+4)\neq 0$

$\Leftrightarrow x\neq \pm 4$

b. $A=\frac{x^2+8x+16}{x^2-16}=\frac{(x+4)^2}{(x-4)(x+4)}=\frac{x+4}{x-4}$

c. $A=3\Leftrightarrow \frac{x+4}{x-4}=3$

$\Rightarrow x+4=3(x-4)$

$\Leftrightarrow -2x+16=0$

$\Leftrightarrow x=8$ (tm) 

d. 

$A=0\Leftrightarrow \frac{x+4}{x-4}=0\Leftrightarrow x+4=0\Leftrightarrow x=-4$

Mà theo ĐKXĐ thì $x\neq \pm 4$ nên không tồn tại $x$ để $A=0$

30 tháng 10 2023

a) ĐKXĐ: 

\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)

\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)

\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)

\(A=\dfrac{x-1}{x+1}\)

c) Thay x = 3 vào A ta có:

\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)

30 tháng 10 2023

a) ĐKXĐ: 

\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)

\(\Leftrightarrow3x\ne\pm y\) 

b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)

\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)

\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)

\(B=\dfrac{2}{3x+y}\)

Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:

\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)

a) ĐKXĐ: \(x\ne-2\)

b) Ta có: \(\dfrac{2x^2-4x+8}{x^3+8}\)

\(=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(=\dfrac{2}{x+2}\)

c) Vì x=2 thỏa mãn ĐKXĐ

nên Thay x=2 vào biểu thức \(\dfrac{2}{x+2}\), ta được:

\(\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)

Vậy: Khi x=2 thì giá trị của biểu thức là \(\dfrac{1}{2}\)

d) Để \(\dfrac{2}{x+2}=2\) thì x+2=1

hay x=-1(nhận)

Vậy: Để \(\dfrac{2}{x+2}=2\) thì x=-1

a: ĐKXĐ: \(x\notin\left\{-1;-2\right\}\)

b: \(M=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\dfrac{x-1}{x+2}\)

Thay x=2002 vào M, ta được:

\(M=\dfrac{2002-1}{2002+1}=\dfrac{2001}{2003}\)

c: Để M=0 thì x-1=0

hay x=1(nhận)

4 tháng 1 2022

a) \(\text{A}=\dfrac{4x+4}{x^2-1}.\)

Để phân thức A có nghĩa. \(\Leftrightarrow x\ne1;x\ne-1.\)

b) \(\text{A}=\dfrac{4x+4}{x^2-1}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}.\)