K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2022

Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!

Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.

Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:

$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$

Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:

$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)

⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$

⇒ $\(CH=DK=\dfrac{120}{13}\)$

Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:

$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$

Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$

18 tháng 5 2018

AB = ?????? bao nhiêu hã bạn

10 tháng 1 2018

a) DDBC vuông  có B C D ^ = 2 B D C ^  nên A D C ^ = B C D ^ = 60 0  và  D A B ^ = C B A ^ = 120 0

b) Tính được DC = 2.BC = 12cm, suy ra PABCD = 30cm.

Hạ đường cao BK, ta có BK = 3 3 c m .

Vậy SABCD =  27 3 c m 2

AH
Akai Haruma
Giáo viên
30 tháng 12 2020

Lời giải:

a) Vì $ABCD$ là hình thang cân nên $\widehat{D}=\widehat{C}$ và $AD=BC$

$\Rightarrow \frac{AD}{BC}=1$

Xét tam giác $ADE và $BCF$ có:

$\widehat{D}=\widehat{C}$ (cmt)

$\widehat{E}=\widehat{F}=90^0$

$\Rightarrow \triangle ADE\sim \triangle BCF$ (g.g)

$\Rightarrow \frac{DE}{CF}=\frac{AD}{BC}=1$

$\Rightarrow DE=CF$ (đpcm)

b) Vì $AB\parallel EF, EF\perp AE$ nên $AB\perp AE\Rightarrow \widehat{EAB}=90^0$

Tứ giác $ABFE$ có $\widehat{E}=\widehat{F}=\widehat{A}=90^0$ nên $ABFE$ là hình chữ nhật (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 12 2020

Hình vẽ:undefined

Kẻ CH,DK lần lượt vuông góc AB

ΔCAB vuông tại C 

=>CA^2+CB^2=AB^2

=>CA^2+10^2=26^2

=>CA=24cm

ΔCAB vuông tại C có CH là đường cao

nên CH*AB=CA*CB

=>CH*26=10*24=240

=>CH=120/13(cm)

ΔCHB vuông tại H

=>HB^2+CH^2=CB^2

=>HB^2=10^2-(120/13)^2=2500/169(cm)

=>HB=50/13(cm)

Xét ΔDKA vuông tại K và ΔCHB vuông tại H có

DA=CB

góc DAK=góc CBH

=>ΔDKA=ΔCHB

=>KA=HB=50/13cm

KH=AB-AK-HB

=26-50/13*2=238/13(cm)

Xét tứ giác KDCH có

DC//KH

DK//CH

Do đó: KDCH là hình bình hành

=>DC=KH=238/13(cm)

S ABCD=1/2*(DC+AB)*CH

=1/2(238/13+26)*120/13

=34560/169(cm2)

Kẻ CH,DK vuông góc với AB

ΔCAB vuông tại C

=>CA^2+CB^2=AB^2

=>CA^2=26^2-10^2=576

=>CA=24(cm)

Xét ΔCAB vuông tại C có CH là đường cao

nên CH*AB=CA*CB

=>CH*26=24*10=240

=>CH=120/13(cm)

ΔCAB vuông tại C có CH là đường cao

nên BH*BA=CB^2

=>BH=10^2/26=100/26=50/13(cm)

Xét ΔDKA vuông tại K và ΔCHB vuông tại H có

DA=CB

góc DAK=góc CBH

=>ΔDKA=ΔCHB

=>BH=KA=50/13(cm)

=>KH=26-50/13*2=238/13(cm)

Xét tứ giác DCHK có

DC//HK

DK//HC

=>DCHK là hình bình hành

=>DC=HK=238/13(cm)

S ABCD=1/2(DC+AB)*CH

=1/2(238/13+26)*120/13

=60/13*576/13

=34560/169cm2