K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

a) bạn tự vẽ hình nhé!

Có : \(AE=BE=\frac{1}{2}AB\) (đề cho)

\(DF=CF=\frac{1}{2}DC\) (đề cho)

mà \(AB=CD\)

\(\Rightarrow\) \(AE=BE=DF=CF\)

Xét tứ giác AEFD có:

\(AE=DF\) (cmt) và AE//DF( AB//CD)

\(\Rightarrow\) Tứ giác AEFD là hình bình hành

Xét tứ giác AECF có :

AE = CF ( cmt) và AE//CF ( AB//CD)

\(\Rightarrow\) Tứ giác AECF là hình bình hành

28 tháng 2 2017

M là giao điểm của AF và DE

\(\Rightarrow\) AM = FM=\(\frac{1}{2}AF\) ( tính chất đ/chéo hbhành) (1)

N là giao điểm của BF và CE

\(\Rightarrow\) EN = CN=\(\frac{1}{2}CE\) ( tính chất đ/chéo hbhành) (2)

Có AF = AM + FM

CE = EN + CN

mà AE = CE ( AECF là hbh)

Từ (1) và (2) suy ra MF= EN và MF//EN ( AF//CE )

\(\Rightarrow\) EMFN là hình bình hành (3)

Có AE = AD ( cùng bằng 2AB ) và AEFD là hình bình hành nên AEFD là hình thoi

\(\Rightarrow\) AF \(\perp\) DE tại M hay góc EMF = 90 độ (4)

Từ (3) và (4) suy ra : EMFN là hcn

12 tháng 2 2016

 a) 
theo đề bài ta có AB=2AD 
mà ABCD là hình bình hành ta lại có AB=CD=2AD 
lại có E và F theo thứ tự là trung điễm của cạnh AB và CD 
=>AE=EB=BC=CF=FD=DA=EF (1) 
Theo tính chất hình bình hành ta có AB//CD hay AE//FC (vì E và F theo thứ tự là trung điễm của cạnh AB và CD nên E,F lần lượt thuộc ab và cd) (2) 
từ 1 và 2 => AECF là hình bình hành (có 2 cạnh đối song song và bằng nhau) 
b) 
kẻ EF và DE cắt nhau tại M có 
EF//AD 
theo (1) ta có AE=FD=DA=EF 
=>.Tứ giác AEFD là hình thoi 
=> AF vuông góc với DE (2 đường chéo cắt nhau và vuông góc với nhau tại trung điểm của mỗi đường)

c) CM  tứ giác EMFN là tứ giác nội tiếp... 

( Mình chỉ làm được thế thôi, xin lỗi nhé!!)^^

12 tháng 2 2016

moi hok lop 6

6 tháng 12 2015

a) ABCD là hbh =>AB=CD và AB//CD

=>1/2AB=1/2CD hay AE=CF

T/g AECF có AE=CF và AE//CF(AB//CD)

=>AECF là hbh

b)C/m tương tự : AEFD là hbh

+) AB=2AD=>AD=1/2AB=AE

Hbh AECF có AD=AE =>AECF là hthoi

=> 2 đg chéo AF vuông góc với ED

c) Cũng c/m tương tự như câu b) ta có EBCF là h thoi => EC vuông góc với BF

+) AECF là hbh nên AF//EC hay MF//EN

=>DEN+ENF=180(2 góc trong cùng phái bù nhau) =>DEN+90=180 =>DEN=90(độ) hay MEN=90(độ)

Tg MENF có MEN=90(độ);EMF=90(do DE vuông góc AF)

                   ENF=90(độ)(do EC vuông góc BF)

=>MENF là hình c/nhật =>2 đg chéo EF=MN

d) Vì MENF là hcn nên 2 đg chéo EF=MN và cắt nhau tại trung điểm mỗi đường

=>I là trung điểm của MN và EF

=>IM=1/2MN=1/2EF=1/2.3=1,5 (cm)

Vậy IM=1,5cm

=>

3 tháng 12 2015

 a) 
theo đề bài ta có AB=2AD 
mà ABCD là hình bình hành ta lại có AB=CD=2AD 
lại có E và F theo thứ tự là trung điễm của cạnh AB và CD 
=>AE=EB=BC=CF=FD=DA=EF (1) 
Theo tính chất hình bình hành ta có AB//CD hay AE//FC (vì E và F theo thứ tự là trung điễm của cạnh AB và CD nên E,F lần lượt thuộc ab và cd) (2) 
từ 1 và 2 => AECF là hình bình hành (có 2 cạnh đối song song và bằng nhau) 
b) 
kẻ EF và DE cắt nhau tại M có 
EF//AD 
theo (1) ta có AE=FD=DA=EF 
=>.Tứ giác AEFD là hình thoi 
=> AF vuông góc với DE (2 đường chéo cắt nhau và vuông góc với nhau tại trung điểm của mỗi đường)

c) CM  tứ giác EMFN là tứ giác nội tiếp... 

( Mình chỉ làm được thế thôi, xin lỗi nhé!!)^^
 

4 tháng 12 2015

Khó quá đi! Nhưng mà hay thật!

25 tháng 12 2015

a) Theo đề bài ta có:  AB=2AD 

Mà ABCD là hình bình hành nên ta lại có: AB=CD=2AD ; E và F theo thứ tự là trung điểm của AB và CD

=> AE=EB=BC=CF=FD=DA=EF (1)

Theo tính chất hình bình hành ta có AB//CD hay AE//FC (vì E và F theo thứ tự là trung điểm của AB và CD nên E,F lần lượt thuộc AB và CD) (2)

Từ 1 và 2 => AECF là hình bình hành (có 2 cạnh đối song song và bằng nhau)
b) Kẻ EF và DE cắt nhau tại M có:

EF//AD

Theo 1 ta có AE=FD=DAEF

=>  tứ giác AECF là hình thoi

=> AF vuông góc với DE ( 2 đường chéo cắt nhau và vuông góc tại trung điểm của mỗi đường)

c) Ta có: EF//EC => MF//NE (vì AECF là hình bình hành)

Mà MF=NE (2 đg chéo cắt nhau tại trung điểm của mỗi đg)

=> hình bình hành

Ta có AF vuông góc với DE nên M là góc vuông

=>  EMFN là hình chữ nhật

=> EF=MN

(xin lỗi câu d không biết làm)

30 tháng 5 2017

A D F M E B C N

a) Tứ giác AEFD là hình thoi, tứ giác AECF là hình bình hành (tự chứng minh).

b) Tứ giác AECF là hình bình hành nên EN // FM. Tứ giác AECF là hình bình hành nên EM // FN. AEFD là hình thoi nên AF \(\perp\) DE.

Hình bình hành EMFN có \(\widehat{M}=90^o\) nên là hình chữ nhật.

c) Hình chữ nhật EMFN là hình vuông

\(\Leftrightarrow\) ME = MF \(\Leftrightarrow\) DE = AF (vì DE = 2ME, AF = 2MF)

\(\Leftrightarrow\) Hình thoi AEFD có hai đường chéo bằng nhau

\(\Leftrightarrow\) AEFD là hình vuông \(\Leftrightarrow\) \(\widehat{A}=90^o\).

\(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.

Như vậy, hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật.

3 tháng 11 2018

Bạn kham khảo nha

Ôn tập : Tứ giác