Tìm tất cả các số tự nhiên n sao cho n + 1, n + 3, n + 7, n + 9, n + 13 và n + 15 đều là số nguyên tố
Trình bày cách giải ra nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n là số 4
vì 4+1=5 là số nguyên tố
4+3=7 là số nguyên tố
4+7=11 là số nguyên tố
4+9=13 là số nguyên tố
4+13=17 là số nguyên tố
4+15=19 là số nguyên tố.
tk nha
Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Tìm số tự nhiên n để các số n+1,n+3,n+7,n+9,n+13,n+15n+1,n+3,n+7,n+9,n+13,n+15 đều là những số nguyên tố
Thử n đến 3 ko thỏa mãn!
*) n=4 thì đúng.
*) Xét n>4 thì các số đó đều lớn hơn 5.
Xét số dư khi chia n cho 5:
+) Dư 1 thì n+9⋮5n+9⋮5
+) Dư 2 thì n+13⋮5n+13⋮5
+) Dư 3 thì n+7⋮5n+7⋮5
+) Dư 4 thì n+1⋮5n+1⋮5
+) Dư 0 thì n+15⋮5n+15⋮5
Ko thỏa mãn TH nào!!!
Vậy n=4n=4
Đã gửi 16-06-2013 - 20:56
Vào lúc 16 Tháng 6 2013 - 21:14, Juliel đã nói:
Tìm số tự nhiên n để các số n+1,n+3,n+7,n+9,n+13,n+15n+1,n+3,n+7,n+9,n+13,n+15 đều là những số nguyên tố
Thử n đến 3 ko thỏa mãn!
*) n=4 thì đúng.
*) Xét n>4 thì các số đó đều lớn hơn 5.
Xét số dư khi chia n cho 5:
+) Dư 1 thì n+9⋮5n+9⋮5
+) Dư 2 thì n+13⋮5n+13⋮5
+) Dư 3 thì n+7⋮5n+7⋮5
+) Dư 4 thì n+1⋮5n+1⋮5
+) Dư 0 thì n+15⋮5n+15⋮5
Không thỏa mãn TH nào!!!
Vậy n=4n=4
Trước hết, ta chứng minh rằng với mọi số n lớn hơn hoặc bằng 5, điều kiện của đề bài không thỏa mãn.
Thật vậy, với \(n\ge5\), ta có:
+ Nếu n = 5k thì n + 15 chia hết 5. Vậy n + 15 là hợp số.
+ Nếu n = 5k + 1 thì n + 9 chia hết cho 5. Vậy n + 9 là hợp số.
+ Nếu n = 5k + 2 thì n + 3 chia hết cho 5. Vậy n + 3 là hợp số.
+ Nếu n = 5k + 3 thì n + 7 chia hết cho 5. Vậy n + 7 là hợp số.
+ Nếu n = 5k + 4 thì n + 1 chia hết cho 5. Vậy n + 1 là hợp số.
Vậy n < 5.
Để n + 1, n + 3, n + 7, n + 9, n + 13 và n + 15 đều là số nguyên tố thì n phải là số chẵn. Vì nếu n là số lẻ thì các số trên là số chẵn lớn hơn 2, và là hợp số.
Vậy n = 2 hoặc n = 4.
Với n = 2, ta thấy ngay n + 7 = 2 + 7 = 9, là hợp số.
Với n = 4, ta có các số 5, 7, 11, 13, 17, 19 đều là số nguyên tố.
Vậy số cần tìm là n = 4.
Thử n đến 3 không thỏa mãn
* n=4 thì các số là các số nguyên tố
*Xét n >4 thì các số đó đều lớn hơn 5
Xét các số dư khi chia n cho 5
+ Dư 1 thì n+ 9\(⋮\)5n+9\(⋮\)5
+Dư 2 thì n+13 \(⋮\)5n+13\(⋮\)5
+ Dư 3 thì n+7 \(⋮\)5n+7\(⋮\)5
+ Dư 4 thì n+1 \(⋮\)5n+1\(⋮\)5
+ Dư 0 thì n+15\(⋮\)5n+15\(⋮\)5
Không TM trường hợp nào cả
=>n = 4 là giá trị cần tìm