K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

S = a.b/2

Xét : a^2+b^2/4 - ab/2 = a^2+b^2-2ab/4 = (a-b)^2/4 >= 0

=> ab/2 < = a^2+b^2/4

=> S < = a^2+b^2/4

=> đpcm

Tk mk nha

14 tháng 1 2018

Bạn dưới Nguyễn Anh Quân nhầm rồi ; đây là tam giác thường chứ ko phải tam giác vuông

11 tháng 12 2019

theo công thức Brahmagupta bđt \(\Leftrightarrow\)\(\sqrt{\frac{\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd}{16}-\frac{1}{4}\left(ac+bd\right)^2+\frac{1}{4}u^2v^2}\le\frac{a^2+b^2+c^2+d^2}{4}\)

Gọi u, v là 2 đường chéo của tứ giác, theo bđt Ptolemy ta coa: \(uv\le ac+bd\)\(\Leftrightarrow\)\(\frac{1}{4}u^2v^2\le\frac{1}{4}\left(ac+bd\right)^2\)

Do đó cần CM: \(\sqrt{\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd}\le a^2+b^2+c^2+d^2\)

\(\Leftrightarrow\)\(\left(a^2+b^2+c^2+d^2\right)^2-2\left(a^4+b^4+c^4+d^4\right)+8abcd\le\left(a^2+b^2+c^2+d^2\right)^2\)

\(\Leftrightarrow\)\(a^4+b^4+c^4+d^4\ge4abcd\) ( đúng theo Cosi ) 

Dấu "=" xảy ra khi ABCD là hình vuông 

8 tháng 6 2020

A B C D b H a c d

Vẽ AH _|_ CD: \(S_{ACD}=\frac{1}{2}ah\le\frac{1}{2}ab\)

\(\Rightarrow4S_{ACD}\le2ab\le a^2+b^2\) (Theo BĐT Cosi)

Tương tự \(4S_{ABC}\le c^2+d^2\)

Vậy \(4\left(S_{ACD}+S_{ABC}\right)\le a^2+b^2+c^2+d^2\) hay \(S\le\frac{a^2+b^2+c^2+d^2}{4}\)

Dấu "=" xảy ra <=> \(\Delta\)ABC vuông ở B và \(\Delta\)ADC vuông ở D

=> ABCD là hình vuông

16 tháng 1 2021

BĐT trên bị ngược dấu rồi.

Theo công thức Heron:

\(S=\dfrac{1}{4}\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\).

Do đó ta chỉ cần cm:

\(\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\leq a^2b^2+b^2c^2+c^2a^2\). (1)

Ta có \(\left(1\right)\Leftrightarrow a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\ge0\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2}{2}+\dfrac{\left(b^2-c^2\right)^2}{2}+\dfrac{\left(c^2-a^2\right)^2}{2}\ge0\) (luôn đúng).

Do đó bđt ban đầu cũng đúng.

Đẳng thức xảy ra khi tam giác đó đều.