tìm số nguyên a và b sao cho (2a+1).(2b-1)=-13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 13 :
Có : c = (a-b).[-(a-b)] = -(a-b)^2
Vì a khác b => a-b khác 0 => (a-b)^2 > 0
=> c = -(a-b)^2 < 0
=> c là số âm
Tk mk nha
Cách lầy nèk
\(Q=\frac{a}{1+2a}+\frac{b}{1+2b}\le\frac{a}{2\sqrt{2a}}+\frac{b}{2\sqrt{2b}}=\frac{\sqrt{a}}{2\sqrt{2}}+\frac{\sqrt{b}}{2\sqrt{2}}\)
\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{2}}=\frac{\sqrt{\frac{a}{2}}+\sqrt{\frac{b}{2}}}{2\sqrt{2}.\frac{1}{\sqrt{2}}}\le\frac{\frac{a+\frac{1}{2}}{2}+\frac{b+\frac{1}{2}}{2}}{2}=\frac{a+b+1}{4}=\frac{2}{4}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Có a+b =1
Áp dụng bất đẳng thức cô-si
=> ab= \(\frac{\left(a+b\right)}{2}\)
<=> ab= \(\frac{1}{2}\)
P=\(\frac{\left(ab+a+ab+b\right)}{\left(ab+a+b+1\right)}\)
= \(\frac{\left(2ab+1\right)}{\left(ab+2\right)}\)
=\(\frac{\left[\left(2ab+4\right)-3\right]}{\left(ab+2\right)}\)
=\(2+\left[\frac{-3}{\left(ab+2\right)}\right]\)
Có ab = \(\frac{1}{2}\)
\(ab+2\Leftarrow\frac{5}{2}\)
\(\frac{1}{\left(ab+2\right)}\ge\frac{2}{5}\)
\(\frac{-1}{\left(ab+2\right)}\Leftarrow\frac{-2}{5}\)
\(\frac{-3}{ \left(ab+2\right)}\Leftarrow\frac{-6}{5}\)
=> GTLN = \(\frac{-6}{5}+2=\frac{4}{5}\) tại \(a=b=\frac{1}{2}\)