Câu 1: Cho A = \(\frac{2020-n}{2015-n}\). Hãy tìm các số tự nhiên n để A là số tự nhiên.
(Hãy nêu cách giải theo cách giải của toán casio giùm mik nha!!!)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình xin giải thích bài này như sau:
a) Tìm 4 số tự nhiên thuộc tập L với điều kiện là 2 * K + 1 vậy các bạn cứ lấy bất kỳ một số tự nhiên thay vào vị trí K sẽ luôn được 1 số lẻ.
VD: thay k=0 thì: 2 * 0 + 1 = 1 hoặc k = 1 thì: 2 * 1 + 1 = 3
b: L là tập hợp các số tự nhiên lẻ.
Bạn không được đăng nhiều câu hỏi trùng lặp như thế, cho dù cần lời giải gấp thì mấy bạn sẵn sàng trả lời, chứ hỏi liên tiếp vậy gây loãng trang hỏi đáp. Mình muốn giải câu hỏi cũng chẳng biết giải vào câu nào vì đăng một lúc quá nhiều.
a) \(3\in M;5\in M;1\in M;7\in M\)
\(4\notin M;6\notin M\)
b) \(M=\left\{n\inℕ|n=2\left(k+0,5\right)\right\}\)
a) 7 ∈ M
9 ∈ M
11 ∈ M
13 ∈ M
2 ∉ M
4 ∉ M
b) M = {n ∈ ℕ | n chia 2 dư 1}
a,
- Bốn số tự nhiên thuộc tập hợp L: 3;5;7;11
- Hai số tự nhiên không thuộc tập hợp L:2;4
b,
L = {n ∈ N | x là số lẻ}
mh chưa hk toán casio(mt cầm tay)
ta có:\(\frac{2020-n}{2015-n}=\frac{2015-n+5}{2015-n}=1+\frac{5}{2015-n}\)
để 5/(2015-n) là snt thì 2015-n>/0 và \(2015-n\in\left\{1;5\right\}\)
ta có: 2015-n=1 suy ra n=2014
2015-n=5 suy ra n=2010
để A là snt thì n=2014;n=2010