Cho hình chóp tứ giác S.ABCD đáy tứ giác ABCD có AB không song song với CD,
gọi M là một điểm trên cạnh SC.
a) Tìm giao tuyến của (SAB) với (SCD).
b) Tìm giao điểm I của AM và (SBD)
giúp em với nhanh ạ:((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Trong mp(ABCD), Gọi giao của AC và BD là O
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà S thuộc (SAC) giao (SBD)
nên (SAC) giao (SBD)=SO
b:Trong mp(ABCD), Gọi giao của AB và CD là M
\(M\in AB\subset\left(SAB\right)\)
\(M\in CD\subset\left(SCD\right)\)
=>M thuộc (SAB) giao (SCD)
mà S thuộc (SAB) giao (SCD)
nên (SAB) giao (SCD)=SM
c: Trong mp(ABCD), gọi N là giao của AD với BC
\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)
Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)
a: Chọn mp(SAB) có chứa SA
\(AB\subset\left(SAB\right);AB\subset\left(ABCD\right)\)
Do đó: \(AB=\left(SAB\right)\cap\left(ABCD\right)\)
Ta có: SA cắt AB tại A
=>A là giao điểm của SA với mp(ABCD)
b: Gọi E là giao điểm của AB và CD trong mp(ABCD)
\(E\in AB\subset\left(SAB\right);E\in CD\subset\left(SCD\right)\)
=>\(E\in\left(SAB\right)\cap\left(SCD\right)\)
mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)
nên \(\left(SAB\right)\cap\left(SCD\right)=SE\)
a: \(SB\subset\left(SAB\right)\)
\(SB\subset\left(SBD\right)\)
Do đó: \(\left(SAB\right)\cap\left(SBD\right)=SB\)
b: \(F\in SB\subset\left(SAB\right);F\in\left(SDF\right)\)
Do đó: \(F\in\left(SAB\right)\cap\left(SDF\right)\)
mà \(S\in\left(SAB\right)\cap\left(SDF\right)\)
nên \(\left(SAB\right)\cap\left(SDF\right)=SF\)
c: \(F\in SB\subset\left(SBC\right);F\in\left(FCD\right)\)
\(\Leftrightarrow F\in\left(SBC\right)\cap\left(FCD\right)\)
mà \(C\in\left(CBS\right)\cap\left(FCD\right)\)
nên \(\left(FCD\right)\cap\left(SBC\right)=CF\)
a.
Do M là trung điểm SC, N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAC
\(\Rightarrow MN||AC\)
Mà \(AC\in\left(ABCD\right)\Rightarrow MN||\left(ABCD\right)\)
Gọi O là giao điểm AC và BD \(\Rightarrow O=\left(SAC\right)\cap\left(SBD\right)\)
\(S=\left(SAC\right)\cap\left(SBD\right)\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)
b.
Trong mp (ABCD), kéo dài AB và CD cắt nhau tại E
Trong mp (SCD), nối EM cắt SD tại F
\(\Rightarrow F=SD\cap\left(MAB\right)\)
a: Trong mp(ABCD), gọi N là giao điểm của AD và BC
\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)
=>\(N\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)
b: Gọi H là giao điểm của SG với CD
Xét ΔSCD có
G là trọng tâm
H là giao điểm của SG với DC
Do đó: H là trung điểm của DC
Chọn mp(SAH) có chứa MG
Trong mp(ABCD), gọi E là giao điểm của AH với BD
\(E\in AH\subset\left(SAH\right)\)
\(E\in BD\subset\left(SBD\right)\)
Do đó: \(E\in\left(SAH\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAH\right)\cap\left(SBD\right)\)
nên \(\left(SAH\right)\cap\left(SBD\right)=SE\)
Gọi K là giao điểm của MG với SE
=>K là giao điểm của MG với (SBD)
a: \(G\in\left(SCD\right);G\in\left(GAB\right)\)
Do đó: \(G\in\left(SCD\right)\cap\left(GAB\right)\)
Xét (SCD) và (GAB) có
\(G\in\left(SCD\right)\cap\left(GAB\right)\)
CD//AB
Do đó: (SCD) giao (GAB)=xy, xy đi qua G và xy//AB//CD
Miền trong tam giác SC và gì nữa bạn? Tam giác phải có 3 đỉnh