Cho tam giác abc , m là trung điểm bc . Trên ac lấy n sao cho an = 1/4 ac . Nối m với n . kéo dài mn và ab cắt nhau tại p . nối p với c . biết diện tích apn là 10cm2 . Tính diện tích ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác APN và NPC có:
+ Đáy AN = 1/4 AC hay AN = 1/3 NC ( giả thiết)
+ Chung chiều cao hạ từ P
* Diện tích tam giác APN= 1/3 diện tích tam giác PNC
* Vậy diện tích PNC = 10 x 3 = 30(cm3)
b) Nối B với N
Xét tam giác PBM và tam giác MPC có:
+ Chung chiều cao hạ từ P xuống đáy BC
+ BM = MC ( theo giả thiết)
* Diện tích tam giác PBM = MPC (1)
Xét tam giác BNM và MNC có:
+ Chung chiều cao hạ từ N
+ BM = MC ( theo giả thiết)
* Diện tích tam giác BNM = MNC (2)
* Từ (1) và (2) ta có diện tích BPN = NPC ( hiệu hai tam giác bằng nhau)
* Diện tích BPN = 30 (cm2)
* Mà diện tích tam giác ANB = diện tích PNB – APN= 30- 10=20(cm²)
Xét tam giác ABN và ABC có:
+ AN = 1/4 AC ( giả thiết)
+ Chung chiều cao hạ từ B
* Diện tích tam giác ABN= 1/4 diện tích tam giác ABC = 20 x 4 = 80 (cm²)
Ta có:
MN = 1/2 AB - 1/3 AB = 1/6 AB
Xét tam giác NMD và MCD có chiều cao = chiều rộng hình chữ nhật mà đáy NM = 1/6 CD => S_NMD = 1/6 S_MCD. Mà S_MCD = 360 : 2 = 180 (cm2) => S_NMD = 180 : 6 = 30 (cm2)
Mặt khác 2 tam giác này chugn đáy MD => Chiều cao tam giác NMD đỉnh N = 1/6 chiều cao tam giác MCD đỉnh C
Xét tam giác NMD và NMC chung đáy NM chiều cao bằng nhau => S_NMD = S_NMC = 30 (cm2)
Xét tam giác NMO và MCO có chung đáy MO chiều cao tam giác NMO = 1/6 chiều cao MCO => S_NMO = 1/6 S_MCO
Vậy diện tích NMO là : 30 : (1 + 6) = 30/7 (cm2)
mk trả lời đầu tiên nhớ k cho mk nha!
Xét tam giác BMN và MNC
đáy BM = MC
chung chiều cao hạ từ N xuống hai đáy
\Rightarrow S BMN = S MNC
\Rightarrow chiều cao hạ từ B và C xuồng dấy MN bằng nhau
xét tam giác PBN và PCN có chung dấy nc
chiều cao hạ từ B và C xuống PN bằng nhau
\Rightarrow S PBN =S PCN =45
mà S BPN = S APN + S ANB =45
\Rightarrow S ANB =45-S APN=45-15=30(cm2)
Xét 2 tam giác ABC và ANB
+đáy AC=4 AN
+chung chiều cao hạ từ B xuống AC
\Rightarrow ABC = 4ANB
\Rightarrow SABC=4x30=120(cm2)
vậy SABC=120 cm2
a/
Ta có
\(NC=2AN\Rightarrow\dfrac{AN}{AC}=\dfrac{1}{3}\)
Hai tg ABN và tg ABC có chung đường cao từ B->AC nên
\(\dfrac{S_{ABN}}{S_{ABC}}=\dfrac{AN}{AC}=\dfrac{1}{3}\Rightarrow S_{ABN}=\dfrac{1}{3}xS_{ABC}\)
Hai tg DBN và tg DCN có chung đường cao từ D->BC và BM=CM nên
đường cao từ B->DM = đường cao từ C->DM
Hai tg DNA và tg DNC có chung đường cao từ D->AC nên
\(\dfrac{S_{DNA}}{S_{DNC}}=\dfrac{AN}{CN}=\dfrac{1}{2}\)
Hai tg này lại có chung DN nên
\(\dfrac{S_{DNA}}{S_{DNC}}=\) đường cao từ A->DM / đường cao từ C->DM \(=\dfrac{1}{2}\)
=> đường cao từ A->DM / đường cao từ B->DM \(=\dfrac{1}{2}\)
Hai tg DNA và tg DBN có chung DN nên
\(\dfrac{S_{DNA}}{S_{DBN}}=\) đường cao từ A->DM / đường cao từ B->DM \(=\dfrac{1}{2}\)
\(\Rightarrow S_{DBN}=2xS_{DNA}\)
\(\Rightarrow S_{DNA}=S_{DBN}-S_{ABN}=2xS_{DNA}-S_{DBN}\Rightarrow S_{DNA}=S_{ABN}=\dfrac{1}{3}xS_{ABC}=\dfrac{10}{3}cm^2\)
b/
Hai tg DNB và tg DNC có chung DN và đường cao từ B->DM = đường cao từ C->DM nên
\(S_{DNB}=S_{DNC}\)
c/ Hai tg DNA và tg ABN có chung đường cao từ N->DB nên
\(\dfrac{S_{DNA}}{S_{ABN}}=\dfrac{AD}{AB}=1\)