Có bao nhiêu số chẵn có bốn số được tạo thành từ các chữ số 0, 1, 2, 3, 4, 5, 6 sao cho:
a) Các chữ số có thể giống nhau
b) Các chữ số khác nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Có 4 cách chọn chữ số hàng đơn vị
6 cách chọn chữ số hàng nghìn
7 cách chọn chữ số hàng trăm
7 cách chọn chữ số hàng chục
⇒ Theo quy tắc nhân: Có 4.6.7.7 = 1176 (số)
b. TH1: Chọn các số chẵn có chữ số hàng đơn vị bằng 0
⇒ Có 6 cách chọn chữ số hàng nghìn
5 cách chọn chữ số hàng trăm
4 cách chọn chữ số hàng chục
⇒ Theo quy tắc nhân: có 6.5.4 = 120 (số)
TH2: Chọn các số chẵn có chữ số hàng đơn vị khác 0.
⇒ Có 3 cách chọn chữ số hàng đơn vị
Có 5 cách chọn chữ số hàng nghìn (khác 0 và khác hàng đơn vị)
Có 5 cách chọn chữ số hàng trăm
Có 4 cách chọn chữ số hàng chục
⇒ Theo quy tắc nhân: Có 3.5.5.4 = 300 (số)
⇒ Theo quy tắc cộng: Có tất cả 120 + 300 = 420 số chẵn thỏa mãn.
Tập hợp A = {0, 1, 2, 3, 4, 5, 6}
a) Gọi số có 4 chữ số tạo thành là \(\overline{abcd}\)
Ta có: \(\overline{abcd}\) chẵn nên:
Số \(\overline{abcd}\left\{{}\begin{matrix}a,b,c,d\in A\\a\ne0\\d\in\left\{0;2;4;6\right\}\end{matrix}\right.\)
_ Có 4 cách để chọn d
_ a ≠ 0 ⇒ có 6 cách chọn a
_ có 7 cách chọn b và 7 cách chọn c
Vậy : 4.6.7.7 = 1176 số chẵn \(\overline{abcd}\) trong đó, các chữ số có thể giống nhau
b) Gọi \(\overline{abcd}\) là số cần tìm
Trường hợp 1: \(\overline{abc0}\left(d=0\right)\)
Vì a, b, c đôi một khác nhau và khác d nên có A63 số \(\overline{abc0}\)
Vậy có A63 số \(\overline{abc0}\)
Trường hợp 2: \(\overline{abcd}\) (với d ≠ 0)
_ d ∈ {2, 4, 6} ⇒ có 3 cách chọn d
_ a ≠ 0, a ≠ d nên có 5 cách chọn a
_ b ≠ a, b ≠ d nên có 5 cách chọn b
_ c ≠ a, b, d nên có 4 cách chọn c
⇒ Có 3. 5. 5. 4 = 300 số \(\overline{abcd}\) loại 2.
Vậy có: A63 + 300 = 420 số \(\overline{abcd}\) thỏa mãn yêu cầu của đề bài.
a. 12345;12340;23451;23145;20135;...
b) lớn nhất: 54320
bé nhất: 10234
tick nhá
a)
1023;1024;1025;1032;1034;1035;1042;1043;1045;1052;1053;1054;1203;1204;1205;1230;1234;1235;1240;1241;1243;1245;1250;1253;1254; 1302;1304;1305;1320;1324;1325;1352;1345;1352;1354;1402;1403;1405;1420;1423;1425;1430;1432;1435;1450;1452;1453;1502;1503;1504;15201;1523;1524;1530;1532;1534;1540;1542;1543;2013;2014;2015;2130;2134;2135;2340;2342;2345;...
Theo mình tính thì trong hàng số 1.000 thì có 60 số vậy hàng 2;3;4;5 cũng có 60 số; vậy, ta có: 1;2;3;4;5 là 5 số, ta lấy: 60x5= 300 số.
Ta biết rằng số chẵn bằng phân nữa số lẻ: nên, ta lấy: 300:2= 150 số chẵn
Vậy: có 150 số chẵn.
b) Số chẵn lớn nhất có 4 chữ số là: 5432
Số lẻ bé nhất có 4 chữ số là: 1023
b, Số có 4 chữ số có dạng \(\overline{abcd}\).
a có 7 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.
Số có 4 chữ số có dạng: \(\overline{abcd}\)
Trong đó d có 4 cách chọn
a có 5 cách chọn
b có 6 cách chọn;
c có 6 cách chọn
Số các số chẵn có 4 chữ số được lập từ các số đã cho là:
4 x 5 x 6 x 6 = 720 (số)
Đáp số: 720 (số)
Tham khảo:
Trong đó d có 4 cách chọn: \(\overline{abcd}\)
a có 5 cách chọn
b có 6 cách chọn;
c có 6 cách chọn
Số các số chẵn có 4 chữ số được lập từ các số đã cho là:
4 x 5 x 6 x 6 = 720 (số)
Đáp số: 720 (số)
Chọn D
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng
a b c d e ¯ (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau là
(để ý: có 3 cách xếp sao cho ba chữ số chẵn đứng liền nhau là
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b;c})
Suy ra, số các số tự nhiên thỏa đề ra là
Chọn A
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}.
Ta có,
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng a b c d e ¯ (a có thể bằng 0) là .
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 0 b c d e ¯ là
Suy ra, số các số tự nhiên thỏa đề ra là .
Ý tưởng phát triển câu 39: thêm ràng buộc về thứ tự sắp xếp cho số tự nhiên lập được.
thiếu bn ơi
ok mình sửa rồi