Ba tổ sản xuất cùng làm 1 số sản phẩm như nhau. Tổ 1 làm trong 2 h, tổ 2 làm trong 3h, tổ 3 làm trong 5h thì hoàn thành công việc. Hoi mỗi tổ có bao nhiêu người, biết tổ 3 ít hơn tổ 2 là 8 người và năng xuất lao động mỗi ngời là như nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số người của ba tổ lần lượt là \(a,b,c\)(người) \(a,b,c\inℕ^∗\).
Ta có: \(3a=4b=6c\Leftrightarrow\frac{a}{4}=\frac{b}{3}=\frac{c}{2}\)
\(a-c=10\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}=\frac{a-c}{4-2}=\frac{10}{2}=5\)
\(\Leftrightarrow\hept{\begin{cases}a=5.4=20\\b=5.3=15\\c=5.2=10\end{cases}}\)
Tổ 2 hơn tổ 3 là 8 người nên:
=>==
=>=====
Ta làm phép tính như sau:
=>==
==
==
Ta kết luận rằng:
Gọi x , y , z là mỗi tổ (người làm):tổ 1, 2, 3(x , y ,z ∈ N*) Tổ 2 hơn tổ 3 là 8 người nên: a - z Vì năng suất mỗi người như nhau nên số người và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch Ta có: 2x = 3y = 5z => 2 x 30 = 3 y 30 = 5 y 30 => x 15 = y 10 = z 6 = y − z 10 − 6 = 8 4 = 2 Ta làm phép tính như sau: => x 15 = 2.15 = 30 y 10 = 2.10 = 20 z 6 = 2.6 = 12 Ta kết luận rằng: Tổ 1 có 30 người Tổ 2 có 20 người Tổ 3 có 12 người
Gọi số người của tổ 1, tổ 2, tổ 3 lần lượt là \(x;y;z\left(x;y;z\in N\cdot\right)\)
Ta có: \(x+y+z=37\)
Vì năng suất lao động của mỗi người là như nhau nên số công nhân và thời gian làm sản phẩm là hai đại lượng tỉ lệ nghịch
\(\Rightarrow12x=10y=8z\\ \Leftrightarrow\dfrac{12x}{120}=\dfrac{10y}{120}=\dfrac{8z}{120}\\ \Leftrightarrow\dfrac{x}{10}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{10}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y+z}{10+12+15}=\dfrac{37}{37}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.1=10\\y=12.1=12\\z=15.1=15\end{matrix}\right.\)
Vậy số người mỗi tổ có lần lượt là 10 người; 12 người và 15 người.
Gọi 3 tổ lần lượt là x,y,z (x,y,z thuộc N*)Theo bài ra:x/15+y/12+z/18 và x+y+z=90Áp dụng tính chất của dãy tỉ số bằng nhaux/15=y/12=z/18=x+y+z/15+12+18=90/45=2x/15=2=>x=2.15=30y/12=2=>y=2.12=24z/18=2=>z=2.18=36
Gọi số máy của 3 tổ lần lượt là x,y,z
theo đề ta có\(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{18};\)x+y+z=90
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{18}=\dfrac{x+y+z}{15+12+18}=\dfrac{90}{45}=2\)
\(Vậy\dfrac{x}{15}=2\Rightarrow2.15=30\)
\(\dfrac{y}{12}=2\Rightarrow2.12=24\)
\(\dfrac{z}{18}=2\Rightarrow2.18=36\)
vậy tổ 1 làm 30 sản phẩm
tổ 2 làm 24 sản phẩm
tổ 3 làm 36 sản phẩm
* Giả sử nếu làm riêng thì tổ 1 hoàn thàn công việc trong x giờ => tổ 2 làm trong x + 3 giờ (do tổ 1 hoàn thành sớm hơn tổ 2 là 3 giờ mà)
* Do tổ 1 làm riêng thì hoàn thành cv trong x giờ nên mỗi giờ làm được 1/x công việc.
* Tương tự, tổ 2 mỗi giờ làm được \(\frac{1}{x+3}\) công việc.
* Nếu hai tổ củng làm thì mỗi giờ hoàn thành \(\frac{1}{x}\) + \(\frac{1}{x+2}\) công việc.
* Mặt khác, do cả hai tổ cùng là trong 2 giờ thì xong công việc nên mỗi giờ làm được \(\frac{1}{2}\)công việc.
Vậy ta có: \(\frac{1}{x}\) + \(\frac{1}{x+3}\) = \(\frac{1}{2}\) (quy đồng, nhân chéo rồi ra phương trình bậc 2, bạn tự làm nhé!!!)
=> x = 3.
Vậy nếu làm riêng tổ 1 hoàn thành công việc trong 3h, tổ 2 hoàn thành trong 6h
1.
Giải thích các bước giải:1 học sinh cần số ngày để hoàn thành dự án đó là:
36:12=3(học sinh)
cần số học sinh để hoàn thành dự án trong 8 ngày là:
3x8=24(học sinh)
2.
Gọi số sản phẩm làm được của ba tổ lần lượt là :x,y,z
Vì trong cùng một thời gian số sản ohaarm làm được sẽ tỉ lệ nghịch với số giờ hoàn thành 1 sản phẩm do đó, ta có:
2x=3y=4z suy ra x/1/2=y/1/3=z/1/4=x+z-y/1/2+1/4-1/3=30/5/12=72
suy ra x=72*1/2=36 (sản phẩm )
y=72*1/3=24 (sản phẩm )
z=72*1/4=18 (sản phẩm ) ------ cố nhìn nha cj
#rinz
Bài 1 : Giải
8 ngày kém 12 ngày số lần là :
8 : 12 = \(\frac{2}{3}\)( lần )
Cần số học sinh tham gia để có thể hoàn thành dự án đó trong 8 ngày là :
36 : \(\frac{2}{3}\)= 54 ( học sinh )
Đáp số : 54 học sinh
Bài 2
Gọi số sản phẩm 3 tổ cùng làm trong 1 khoảng thời gian là a,b, c sản phẩm ( a,b,c \(\inℕ^∗\))
Ta thấy thời igan hoàn thành 1 sản phẩm càng ngắn thì số sản phẩm làm ra trong 1 khoảng thời gian nhất định càng nhiều , nên đây là bài toán tỉ lệ nghịch .Số sản phẩm hoàn thành trong 1 khoảng thời gian tỉ lệ nghịch với thời gian hoàn thành 1 sản phẩm , nên ta có :
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}=\frac{a+c-b}{\frac{1}{2}+\frac{1}{4}-\frac{1}{3}}=\frac{30}{\frac{5}{12}}=72\)
\(\Rightarrow\frac{a}{\frac{1}{2}}=72\Rightarrow a=72.\frac{1}{2}=36\)
\(\frac{b}{\frac{1}{3}}=\Rightarrow b=72.\frac{1}{3}=24\)
\(\frac{c}{\frac{1}{4}}=72\Rightarrow c=72.\frac{1}{4}=18\)
Như vậy trong cùng khoảng thời gian là 72 giờ tổ A làm được 36 sản phẩm ,tổ B làm được 24 sản phẩm , tổ C làm được 18 sản phẩm .
Gọi số người tổ I,II,III lần lượt là x,y,z ( người, x,y,z )
Theo đề bài ta có: x +y +z = 37
Năng suất lao động như nhau nên số công nhân và thời gian làm việc là hai đại lượng tỉ lệ nghịch
Gọi thời gian tổ I hoàn thành là xx(h), khi đó thời gian tổ 2 hoàn thành là x+3x+3(h)
Khi đó, trong 1h thì tổ I và tổ II lần lượt làm đc là 1x1x(phần công việc) và 1x+31x+3 (phần công việc)
Do đó, trong 1h thì 2 tổ làm đc số phần công việc là 1x+1x+31x+1x+3(phần công việc)
Lại có 2 tổ làm chung thì hoàn thành công việc trong 2h, do đó trong 1h cả hai tổ làm đc 1212 (phần công việc). Do đó
1x+1x+3=121x+1x+3=12
⇒2(x+3)+2x=x(x+3)⇒2(x+3)+2x=x(x+3)
⇔x2−x−6=0⇔x2−x−6=0
⇔(x−3)(x+2)=0⇔(x−3)(x+2)=0
Vậy x=3x=3 hoặc x=−2x=−2(loại)
Suy ra x+3=6x+3=6
Vậy tổ I và tổ II làm trong 33(h) và trong 66(h) thì xong.
Viết nhầm: Câu cuối phải là: Vậy tổ 1 và tổ 2 làm trong 3 và 6 giờ thì xong
Gọi x, y, z lần lượt là số người của 3 tổ sản xuất (x, y, z >0) (giờ)
Vì số người và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch
\(\Rightarrow2x=3y=5z\)
\(\Rightarrow\)\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Mà y − z = 8
\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\)\(\frac{y-z}{10-6}=\frac{8}{4}=2\)
\(\Rightarrow\)\(\hept{\begin{cases}x=2\times15=30\\y=2\times10=20\\z=2\times6=12\end{cases}}\)
Vậy số người của 3 tổ sản xuất lần lượt là: 30; 20; 12 (người)