Số dư của phép chia 3n+2-2n+2+3n-2n(với n là số nguyên dương) cho 10 là......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh với mọi số nguyên dương n thì
3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10
Giải
3^n + 2 – 2^n + 2 + 3^n – 2^n
= 3^n+2 + 3^n – 2^n + 2 - 2^n
= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )
= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )
= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )
= 3^n . 10 – 2^n . 5
= 3^n.10 – 2^n -1.10
= 10.( 3^n – 2^n-1)
Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Bài 2:
a, Gọi \(d=ƯCLN\left(3n+1,3n+10\right)\)
\(\Rightarrow3n+1⋮d;3n+10⋮d\\ \Rightarrow3n+10-3n-1⋮d\\ \Rightarrow9⋮d\)
Mà d lớn nhất nên \(d=9\)
Vậy ...
b, Gọi \(d=ƯCLN\left(2n+1,n+3\right)\)
\(\Rightarrow2n+1⋮d;n+3⋮d\\ \Rightarrow2n+1-2n-6⋮d\\ \Rightarrow-5⋮d\)
Mà d lớn nhất nên \(d=5\)
Vậy ...
Với n=1
\(S=2^3+2^2+1=13\) không chia hết cho 7
Bạn kiểm tra lại đề xem
a: Ta có: \(2n+1⋮n+2\)
\(\Leftrightarrow2n+4-3⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-1;-3;1;-5\right\}\)
b: Để B là số nguyên thì \(n+3⋮n-2\)
\(\Leftrightarrow n-2+5⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
c: Để C là số nguyên thì \(3n+7⋮n-1\)
\(\Leftrightarrow3n-3+10⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
3n+2-2n+2+3n-2n
=3n+2+3n-(2n+2+2n)
=3n(32+1)-2n(22+1)=3n.10-2n.5
=3n.10-2n-1.10=10(3n-2n-1) chia hết cho 10
=>chia 10 dư 0