K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2016

Xét tam giác ABC có: AC^2=15^2=225(1)

AB^2+BC^2=12^2+9^2=225(2)

Từ (1);(2)=>AC^2=AB^2+BC^2(225=225)

Do đó tam giác ABC vuông(tại B)

18 tháng 2 2016

Theo đề :

AC = 15 => AC2 = 152 = 225 (cm)

AB = 12 => AB2 = 122 = 144 (cm)

BC = 9 => BC2 = 92 = 81 (cm)

=> AB2 + BC2 = 144 + 81 = 225 = AC2

=> Tam giác ABC vuông tại B (Theo đ/lí Pi-ta-go đảo).

C/m

Có AB = 9cm (gt)

     AC = 12cm (gt)

     BC = 15cm (gt)

=> BC là cạnh lớn nhất.

Có 52 = 225

Có 92 + 122 = 81 + 144 = 255

=> 92 + 122 = 152

=> AB2 + AC2 = BC2

=> \(\bigtriangleup\)ABC vuông tại A

b. Có phân giác góc B cắt góc B tại I

=> ID = IF (định lí) 

8 tháng 2 2021

Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)

                                        => AM là trung tuyến

Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)

                                      =>   AM là đường cao (TC các đường trong tam giác cân)

Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)

                              EM là đường cao (AM là đường cao, E thuộc AM)

=> Tam giác EBC cân tại E

M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Xét tam giác AMB vuông tại M (AM \(\perp BM\))

               AB= AM2 + BM2 (định lý Py ta go)

Thay số:  AB= 82 + 62

        <=> AB=  100

        <=> AB = 10 (cm)

Vậy AB = 10 (cm)

8 tháng 2 2021

Bài 1:

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AH2 = BH . HC (hệ thức lượng)

<=>    122  = 9 . HC

<=>    HC   = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)

Vậy HC = 16 (cm)

Ta có: BC = BH + HC = 9 + 16 = 25 (cm)

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AB2 = BH . BC (hệ thức lượng)

<=>    AB2 = 9 . 25

<=>    AB2 = 225

<=>    AB   = 15 (cm)

Vậy AB = 15 (cm)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔMHC và ΔMKB có 

MH=MK

\(\widehat{HMC}=\widehat{KMB}\)

MC=MB

DO đó: ΔMHC=ΔMKB

c: Ta có: ΔMHC=ΔMKB

nên HC=KB

mà HC<MC

nên KB<MC

4 tháng 4 2022

em cảm ơn rất nhiều ạ , cj có thể lm đc câu d ko ạ ?yeubucminh

9 tháng 1 2016

Tớ sẽ chứng minh câu a,b. Còn câu c,d thì cậu tự chứng minh được.Không cần GT, KL nhé.

  A B C D E x 9 12 15

 a)  Ta có:  Theo định lý Pitagore đảo ta có:

      \(9^2+12^2=81+144=225=15^2\)

   \(\Rightarrow\) Tam giác ABC là tam giác vuông.

b)  Ta có: 

     AB vuông góc với AC ; Cx vuông góc với AC

   \(\Rightarrow\) AB song song với Cx

  \(\Rightarrow\)ABD = DCE

   Xét tam giác ABD và tam giác ECD có:

    ABD = ECD ( CMT)

    BD = EC ( gt )

   ADB = EDC ( 2 góc đối đỉnh )

\(\Rightarrow\) tam giác ABD = tam giác ECD ( g.c.g )

\(\Rightarrow\) AB = EC ( 2 cạnh tương ứng )

     

     

     

26 tháng 2 2020

a) Do 92+122=152 nên là tam giác vuông( định lý pytago)

b) Do B là trung điểm của đoạn AD nên AB và BD đối nhau. Suy ra AD vuông góc AC.

Lại thấy: B là trung điểm AD(gt) nên AD=2AB=18(cm)

Xét tan giác vuông ACD(cmt). Áp dụng định lí Pytago có:

AD2+AC2=DC2

<=>182+152=DC2

<=>324+225=DC2

<=>DC2=549(cm)

<=>DC=\(3\sqrt{61}\left(cm\right)\)

Vậy...

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AB=AD

AC chung

=>ΔABC=ΔADC

=>CB=CD
=>ΔCBD cân tại C

 

DD
1 tháng 7 2021

a) Có \(BC^2=15^2=225\)

\(AB^2+AC^2=9^2+12^2=81+144=225\)

do đó \(BC^2=AB^2+AC^2\)

Theo định lí Pythaogre đảo suy ra tam giác \(ABC\)vuông tại \(A\).

b) \(AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2\left(cm\right)\)

\(HB=\frac{AB^2}{BC}=\frac{9^2}{15}=5,4\left(cm\right)\)

\(HC=BC-HB=15-5,4=9,6\left(cm\right)\)

1 tháng 7 2021
a)ta có:AB^2+AC^2=9^2+12^2=225 BC^2=15^2=225 =>AB^2+AC^2=BC^2 =>Tam giác ABC vuông tại A(theo định lý Pytago đảo)
5 tháng 5 2016

vẽ AH thế nào với BC