Giả sử tam giác ABC có AB = 12cm , AC = 15cm , BC =9cm chứng minh tam giác ABC vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C/m
Có AB = 9cm (gt)
AC = 12cm (gt)
BC = 15cm (gt)
=> BC là cạnh lớn nhất.
Có 52 = 225
Có 92 + 122 = 81 + 144 = 255
=> 92 + 122 = 152
=> AB2 + AC2 = BC2
=> \(\bigtriangleup\)ABC vuông tại A
b. Có phân giác góc B cắt góc B tại I
=> ID = IF (định lí)
Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)
=> AM là trung tuyến
Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)
=> AM là đường cao (TC các đường trong tam giác cân)
Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)
EM là đường cao (AM là đường cao, E thuộc AM)
=> Tam giác EBC cân tại E
M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét tam giác AMB vuông tại M (AM \(\perp BM\))
AB2 = AM2 + BM2 (định lý Py ta go)
Thay số: AB2 = 82 + 62
<=> AB2 = 100
<=> AB = 10 (cm)
Vậy AB = 10 (cm)
Bài 1:
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AH2 = BH . HC (hệ thức lượng)
<=> 122 = 9 . HC
<=> HC = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)
Vậy HC = 16 (cm)
Ta có: BC = BH + HC = 9 + 16 = 25 (cm)
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AB2 = BH . BC (hệ thức lượng)
<=> AB2 = 9 . 25
<=> AB2 = 225
<=> AB = 15 (cm)
Vậy AB = 15 (cm)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
DO đó: ΔMHC=ΔMKB
c: Ta có: ΔMHC=ΔMKB
nên HC=KB
mà HC<MC
nên KB<MC
Tớ sẽ chứng minh câu a,b. Còn câu c,d thì cậu tự chứng minh được.Không cần GT, KL nhé.
a) Ta có: Theo định lý Pitagore đảo ta có:
\(9^2+12^2=81+144=225=15^2\)
\(\Rightarrow\) Tam giác ABC là tam giác vuông.
b) Ta có:
AB vuông góc với AC ; Cx vuông góc với AC
\(\Rightarrow\) AB song song với Cx
\(\Rightarrow\)ABD = DCE
Xét tam giác ABD và tam giác ECD có:
ABD = ECD ( CMT)
BD = EC ( gt )
ADB = EDC ( 2 góc đối đỉnh )
\(\Rightarrow\) tam giác ABD = tam giác ECD ( g.c.g )
\(\Rightarrow\) AB = EC ( 2 cạnh tương ứng )
a) Do 92+122=152 nên là tam giác vuông( định lý pytago)
b) Do B là trung điểm của đoạn AD nên AB và BD đối nhau. Suy ra AD vuông góc AC.
Lại thấy: B là trung điểm AD(gt) nên AD=2AB=18(cm)
Xét tan giác vuông ACD(cmt). Áp dụng định lí Pytago có:
AD2+AC2=DC2
<=>182+152=DC2
<=>324+225=DC2
<=>DC2=549(cm)
<=>DC=\(3\sqrt{61}\left(cm\right)\)
Vậy...
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
=>CB=CD
=>ΔCBD cân tại C
a) Có \(BC^2=15^2=225\)
\(AB^2+AC^2=9^2+12^2=81+144=225\)
do đó \(BC^2=AB^2+AC^2\)
Theo định lí Pythaogre đảo suy ra tam giác \(ABC\)vuông tại \(A\).
b) \(AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2\left(cm\right)\)
\(HB=\frac{AB^2}{BC}=\frac{9^2}{15}=5,4\left(cm\right)\)
\(HC=BC-HB=15-5,4=9,6\left(cm\right)\)
Xét tam giác ABC có: AC^2=15^2=225(1)
AB^2+BC^2=12^2+9^2=225(2)
Từ (1);(2)=>AC^2=AB^2+BC^2(225=225)
Do đó tam giác ABC vuông(tại B)
Theo đề :
AC = 15 => AC2 = 152 = 225 (cm)
AB = 12 => AB2 = 122 = 144 (cm)
BC = 9 => BC2 = 92 = 81 (cm)
=> AB2 + BC2 = 144 + 81 = 225 = AC2
=> Tam giác ABC vuông tại B (Theo đ/lí Pi-ta-go đảo).