CMR với mọi n thuộc N, ta có:
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\) ( cái đề hình như có 1 phân số \(\frac{2}{9}\) đúng không bạn )
\(\Leftrightarrow\)\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Leftrightarrow\)\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{18}\)
\(\Leftrightarrow\)\(x+1=1:\frac{1}{18}\)
\(\Leftrightarrow\)\(x+1=18\)
\(\Leftrightarrow\)\(x=18-1\)
\(\Leftrightarrow\)\(x=17\)
Vậy \(x=17\)
Chúc bạn học tốt ~
Ta thấy: 1+ 2/ n^2+3n = n^2+3n+2 / n(n+3) =(n+1)(n+2) /n(n+3)
Áp dụng công thức trên,ta có:
A= (1+2/4 )(1+ 2/10)(1+2/18).....(1+2/ n^2+3n)
=(1+2 /1x4)( 1+2 /2x5)(1+2 /3x6).....[ (n+1)(n+2)/ n(n+3)]
=(2x3 /1x4)(3x4 /2x5)(4x5 /3x6).....[ (n+1)(n+2) /n(n+3)]
= 3x(n+1 /n+3)
Vì n+1 /n+3 <1 với mọi n thuộc N nên 3x(n+1 /n+3) <3
Vậy A<3
1/21 = 2/42 = 1/7-1/8
1/28 = 2/56 = 1/8-1/9
.....
1/(x*(x+1)) = 1/x -1/(x+1)
cộng lại với nhau ta sẽ được 1/7 - 1/(x+1) = 2/9
suy ra 1/(x+1) = -5/62 :D
Đặt \(A=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\)
=> \(A=\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x\left(x+1\right)}\)
\(\frac{A}{2}=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\)
=> \(\frac{A}{2}=\frac{1}{6}-\frac{1}{x+1}=\frac{x+1-6}{6\left(x+1\right)}=\frac{x-5}{6\left(x+1\right)}\) => \(A=\frac{x-5}{3\left(x+1\right)}=\frac{2}{9}\)
<=> 3(x-5)=2(x+1) <=> 3x-15=2x+2 <=> x=17
Đáp số: x=17
Cách lớp 7 nà:)
\(\frac{1}{n.\left(n+1\right)^2}=\frac{1}{n.\left(n+1\right).\left(n+1\right)}< \frac{1}{n.n\left(n+1\right)}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\) (n>=2_
\(\text{Suy ra }VT< \frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Mặt khác ta có công thức \(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]}{2}\) (n>= 2)
Suy ra \(VT< \frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\left(\text{do }\frac{1}{n\left(n+1\right)}>0\right)\)
Vậy ta có đpcm
Gắt chưa??? :>> Dương Bá Gia Bảo
Sửa đề là với n >= 2 nhé!Mình cũng không chắc nx!Mình ngu dạng này lắm=(((
Với n = 2 thì \(VT=\frac{1}{5}+\frac{2}{13}+\frac{1}{25}< \frac{9}{20}\) (đúng)
Mệnh đề đúng với n = 2
Giả sử đúng với n = k (k>= 2)tức là \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{k^2+\left(k+1\right)^2}< \frac{9}{20}\) (giả thiết qui nạp)
Ta chứng minh nó đúng với n = k + 1 tức là c/m \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{\left(k+1\right)^2+\left(k+2\right)^2}< \frac{9}{20}\)
Ta có: VT = \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{\left(k+1\right)^2+\left(k+2\right)^2}< \frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{k^2+\left(k+1\right)^2}< \frac{9}{20}\)
a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)
+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng
=> (@@) đúng với n = 1
+) G/s (@@) đúng cho đến n
+) Ta chứng minh (@@ ) đúng với n + 1
Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)
\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)
=> (@@) đúng với n + 1
Vậy (@@ ) đúng với mọi số tự nhiên n khác 0
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)
Ta chứng minh (@) đúng với n là số tự nhiên khác 0 quy nạp theo n
+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng
=> (@) đúng với n = 1
+) G/s (@) đúng cho đến n
+) Ta cần chứng minh (@) đúng với n + 1
Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)
=> (@) đúng với n + 1
Vậy (@) đúng với mọi số tự nhiên n khác 0.