K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Ta có : 

\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\) ( cái đề hình như có 1 phân số \(\frac{2}{9}\) đúng không bạn ) 

\(\Leftrightarrow\)\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)

\(\Leftrightarrow\)\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)

\(\Leftrightarrow\)\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)

\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)

\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{18}\)

\(\Leftrightarrow\)\(x+1=1:\frac{1}{18}\)

\(\Leftrightarrow\)\(x+1=18\)

\(\Leftrightarrow\)\(x=18-1\)

\(\Leftrightarrow\)\(x=17\)

Vậy \(x=17\)

Chúc bạn học tốt ~ 

7 tháng 4 2020

fuck you

2 tháng 4 2016

1/21 = 2/42 = 1/7-1/8

1/28 = 2/56 = 1/8-1/9

.....

1/(x*(x+1)) = 1/x -1/(x+1)

cộng lại với nhau ta sẽ được 1/7 - 1/(x+1) = 2/9

suy ra 1/(x+1) = -5/62 :D

29 tháng 3 2018

Đặt \(A=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\)

=> \(A=\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x\left(x+1\right)}\)

\(\frac{A}{2}=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\)

=> \(\frac{A}{2}=\frac{1}{6}-\frac{1}{x+1}=\frac{x+1-6}{6\left(x+1\right)}=\frac{x-5}{6\left(x+1\right)}\) => \(A=\frac{x-5}{3\left(x+1\right)}=\frac{2}{9}\)

<=> 3(x-5)=2(x+1)  <=> 3x-15=2x+2  <=> x=17

Đáp số: x=17

10 tháng 3 2017

câu này quen quen

10 tháng 3 2017

là s hả bạn?

25 tháng 5 2020

a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)

+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng

=> (@@) đúng với n = 1 

+) G/s (@@) đúng cho đến n 

+) Ta chứng minh (@@ ) đúng với n + 1 

Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)

\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)

=>  (@@) đúng với n + 1

Vậy (@@ ) đúng với mọi số tự nhiên n khác 0

26 tháng 5 2020

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)

Ta chứng minh (@) đúng  với n là số tự nhiên khác 0 quy nạp theo n 

+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng 

=> (@) đúng với n = 1 

+) G/s (@) đúng cho đến n 

+) Ta cần chứng minh (@) đúng với n + 1 

Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi số tự nhiên n khác 0.

3 tháng 3 2017

1) Ta có: A=\(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}\right)=\)

=\(\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\)

=\(\frac{1}{3}\left(1-\frac{1}{x+3}\right)=\frac{1}{3}.\frac{x+2}{x+3}=\frac{125}{376}\)

<=> \(\frac{x+2}{x+3}=\frac{375}{376}\)<=> 376(x+2)=375(x+3) <=> 376x+752=375x+1125 => X=373

x=373 nha bạn

mk đang âm điểm,tk mk nha 

24 tháng 7 2019

\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}\)

\(=\frac{n}{2\left(3n+2\right)}\)

13 tháng 8 2015

\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{9}\)

\(\frac{1}{2}\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{n\left(n+1\right)}\right)=\frac{2}{9}.\frac{1}{2}\)

\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+....+\frac{1}{n\left(n+1\right)}=\frac{1}{9}\)

\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{n\left(n+1\right)}=\frac{1}{9}\)

\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{1}{9}\)

\(\frac{1}{6}-\frac{1}{n+1}=\frac{1}{9}\)

\(\frac{1}{n+1}=\frac{1}{6}-\frac{1}{9}\)

\(\frac{1}{n+1}=\frac{1}{18}\)

\(\Rightarrow n+1=18\)

\(\Rightarrow n=17\)

2 tháng 4 2016

tk mị̣̣̉̉̉̉̉̉̀̉̃́́́nh nhe !