Có hay không số tự nhiên n để 2 phân số \(\frac{n+6}{15}\)và \(\frac{n+5}{15}\) đồng thời là các số tự nhiên ?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AH
Akai Haruma
Giáo viên
7 tháng 9
Lời giải:
Nếu $\frac{n+6}{15}$ là số nguyên thì $n+6\vdots 15$
$\Rightarrow n+6\vdots 3\Rightarrow n\vdots 3$
$\Rightarrow n+5\not\vdots 3$ (do $5$ không chia hết cho 3)
$\Rightarrow n+5\not\vdots 18$
$\Rightarrow \frac{n+5}{18}\not\in \mathbb{N}$
Vậy không tồn tại $n$ để 2 phân số trên đồng thời là số tự nhiên.
NT
0
P
0
NT
1
BH
1
30 tháng 7 2018
Xét \(\frac{n+6}{15}\in N\)
\(\Rightarrow n+6\in B\left(15\right)=\left(0;15;30;45;75;...\right)\)
Xét \(\frac{n+5}{18}\in N\)
\(\Rightarrow n+5\in B\left(18\right)=\left(0;18;36;54;72;...\right)\)
Ta thấy ko có n
Giả sử tồn tại số tự nhiên n để 2 phân số đó là các số tự nhiên
=> hiệu của chúng là số tự nhiên
=> \(\frac{n+6}{15}-\frac{n+5}{15}\)là số tự nhiên
=> \(\frac{n+6-n-5}{15}\)là số tự nhiên
=> \(\frac{1}{15}\)là số tự nhiên (Vô lí)
Vậy...