K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB và ΔAEC có

AD=AE

\(\widehat{A}\) chung

AB=AC

Do đó: ΔADB=ΔAEC

28 tháng 1 2022

a) Xét △ AED có AE=AD nến △AED cân tại A

\(\widehat{AED}=\widehat{ADE}\) ⇒\(\widehat{DEB}=\widehat{EDC}\) 

△ABC cân ⇒AB=AC mà AE=AD⇒EB=DC

Xét △DEB và △EDC có :

\(\widehat{DEB}=\widehat{EDC}\left(cmt\right)\)

ED : cạnh chung

EB=DC \(\left(cmt\right)\) 

Do đó : △DEB = △EDC \(\left(c.g.c\right)\) 

Nên \(\widehat{EBD}=\widehat{DCE}\) hay \(\widehat{ABD}=\widehat{ACE}\) 

b) △ABC cân ⇒\(\widehat{ABC}=\widehat{ACB}\) mà \(\widehat{ABD}=\widehat{ACE}\) (câu a) ⇒\(\widehat{IBC}=\widehat{ICB}\) 

Vậy △IBC cân tại I

c) Xét △AIB và △AIC có :

AB=AC(gt)

\(\widehat{ABD}=\widehat{ACE}\) (câu a)

BI=CI(vì △IBC cân tại I)

Do đó :△AIB=△AIC\(\left(c.g.c\right)\) 

\(\widehat{BAI}=\widehat{CAI}\) ⇒ AI là tia phân giác \(\widehat{BAC}\) 

d) Xét △AED và △ABC có :

A : chung 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\) 

Nên △AED đồng dạng △ABC \(\left(c.g.c\right)\) 

\(\widehat{AED}=\widehat{ABC}\) ⇒ ED//BC

Vì AI là đường phân giác của △AED mà △AED cân nên AI cũng là đường cao ⇒AI⊥ED lại có : ED//BC ⇒AI⊥BC

e) AI⊥BC (AI là đường cao tam giác ABC) mà △ABC cân nên AI cũng là đường trung tuyến ⇒ AI là đường trung trực của BC

 

 

28 tháng 1 2022

a, Xét tam giác ABD và tam giác ACE ta có : 

^A _ chung 

^AB = AC ( gt ) 

AD = AE ( gt )

Vậy tam giác ABD = tam giác ACE ( g.c.g )

b, => ^ABD = ^ACE ( 2 góc tương ứng ) 

mà tam giác ABC cân tại => ^B = ^C 

=> ^B - ^ABD = ^DBC 

=> ^C - ^ACE = ^ECB 

=> ^DBC = ^ECB 

Xét tam giác IBC có : ^DBC = ^ECB 

nên IBC là tam giác cân tại I

c, Xét tam giác ABI và tam giác ACI ta có : 

^ABI = ^ACI ( cmt )

AB = AC ( gt) 

IA _ chung 

Vậy tam giác ABI = tam giác ACI ( c.g.c ) 

=> ^BAI = ^CAI ( 2 góc tương ứng )

Vậy AI là phân giác ^BAC 

d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)=> ED // BC ( Ta lét đảo )

mà AI là phân giác của tam giác ABC cân tại A

=> AI đồng thời là đường cao 

=> AI vuông BC ; ED // BC (cmt)

=> AI vuông ED 

e, Xét tam giác ABC cân tại A

AI là đường cao, phân giác 

đồng thời AI là đường trung trực đoạn BC 

7 tháng 2 2022

a)∆ABD và ∆ACE có:

AB=AC(gt)

Góc A là góc chung.

AD=AE(gt)

Nên ∆ABD=∆ACE(c.g.c)

Suy ra:  Góc ABD=góc ACE( 2 góc tương ứng)

Vậy Góc ABD=góc ACE

b) Ta cóGóc ABD=góc ACE

mà góc ABC =góc ACB( do tam giác ABC cân tại A)

suy ra Góc IBC=góc ICB

=>Tam giác IBC cân tại I

Vậy ∆IBC cân tại I

Củm ơn bặn nhìu nkaa..! <3

7 tháng 5 2019

TAO XIN THE LA TAO EO BIET!!!!!!!!!!!!!11

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{A}\) chung

AD=AE

Do đó: ΔABD=ΔACE

Suy ra \(\widehat{ABD}=\widehat{ACE}\)

b:Xét ΔEBC và ΔDCB có 

EB=DC

BC chung 

EC=DB

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

=>IB=IC

Ta có: EI+CI=EC

DI+BI=BD

mà BD=CE

và IB=IC

nên ID=IE

22 tháng 12 2021

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là tia phân giác

2 tháng 2 2021

Câu c) có gì đó sai sai bạn ạ

 

21 tháng 3 2021

.không biết cô cho đề như vậy á