có bao nhiêu bộ 3 số nguyên dương thỏa mãn pt x+y+z=20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)
Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)
<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)
Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương
ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)
Có: \(S^2-3P=S\)
=> \(S+3P\ge4P\)<=> \(S\ge P\)
=> \(S^2-S=3P\le3S\)
<=> \(0\le S\le4\)
+) S = 0 loại
+) S = 1 => P = 0 loại
+) S = 2 => P =3/2 loại
+) S = 3 => P = 2
=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2
=> (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn
hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn
+) S = 4 => P = 4
=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)
=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.
Vậy: có 3 nghiệm là:....
\(x^2+15^y=2^z\)(\(z\ge4\))
Do VT chẵn và 15 lẻ nên x lẻ
Khi đó x có dạng 2k+1(\(k\in N\))
\(\Rightarrow x^2\equiv1\left(mod4\right)\)
TH1:y chẵn \(\Rightarrow15^y\equiv1\left(mod4\right)\)
\(\Rightarrow VT\equiv2\left(mod4\right)\)
\(\Rightarrow2^z\equiv2\left(mod4\right)\).Điều này chỉ xảy ra khi z=1 (nếu z>1 thì 2z chia hết cho 4)
Mà z>=4 => Loại TH này
\(15⋮3\)\(\Rightarrow x^2\equiv2\left(mod3\right)\)(Vô lí)
Vậy y lẻ.
TH2:Với y lẻ thì \(15^y\equiv-1\left(mod4\right)\)mà \(2^z⋮4\)
\(\Rightarrow x^2\equiv-1\left(mod4\right)\)(Vô lí)
Vậy ko có x,y,z là số nguyên dương thỏa mãn
@ Tuấn Đạt@ Sao lại không có nghiệm thỏa mãn. ??
x = 1; y = 1; z = 4. thỏa mãn mà.
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\3^x-9\ge0\end{matrix}\right.\) \(\Rightarrow x\ge2\)
BPT tương đương:
\(\left[{}\begin{matrix}3^x-9=0\\log_3x-y\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\log_3x\le y\end{matrix}\right.\)
Do \(x\ge2\) mà ko có quá \(2186\) số nguyên x thỏa mãn \(\Rightarrow x\le2187\)
\(\Rightarrow3^y\le2187\Rightarrow y\le7\)
Có 7 số nguyên dương y thỏa mãn
Áp dụng hđt: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)Ta có: \(x^3+y^3+3xyz=z^3\Leftrightarrow x^3+y^3+3xyz-z^3=0\Leftrightarrow\left(x+y-z\right)\left(x^2+y^2+z^2-xy+xz+yz\right)=0\)
Th1: \(x+y-z=0\Leftrightarrow x+y=z\Rightarrow z^3=\left(2x+2y\right)^2=4z^2\Leftrightarrow z=4\)(do z là số nguyen dương)
\(\Rightarrow x+y=4\)\(\Rightarrow\left(x,y\right)\in\left\{\left(1,3\right)\left(2,2\right)\left(3,1\right)\right\}\)
\(TH2:x^2+y^2+z^2-xy+xz+yz=0\Leftrightarrow\frac{\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2}{2}=0\)(loại vì x,y,z nguyên dương nên VT>0 )
Vậy...
1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.
Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn
tính mò là ra tuy hơi lâu
cần cù bù thông minh mà =))
Xét các TH :
1) x = 0 ---> y+z = 20
...y có 21 khả năng (từ 0 đến 20\), z có 21 khả năng tương ứng (từ 20 đến 0)
...---> TH 1 có 21 nghiệm
2) x = 1 ---> y+z = 19
...y có 20 khả năng, z có 20 khả năng tương ứng ---> TH 2 có 20 nghiệm
3) x = 2 ---> y+z = 18
...Tương tự, TH 3 có 19 nghiệm
4) x = 3 ---> y+z =17 ---> TH 4 có 18 nghiệm
..........................................
..........................................
..........................................
Tổng số bộ 3 số nguyên ko âm thỏa mãn pt (tức tổng số nghiệm nguyên ko âm của pt) là 1+2+3+ ... + 21 = 231