K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

moi hok lop 6 thoi

14 tháng 8 2016

\(\frac{1}{1x2}x\frac{4}{2x3}x\frac{9}{3x4}x...x\frac{10000}{100x101}=\frac{1x1}{1x2}x\frac{2x2}{2x3}x\frac{3x3}{3x4}x...x\frac{100x100}{100x101}\)

=\(\frac{1x2x3x...x100}{1x2x3x...x100}x\frac{1x2x3x...x100}{2x3x4x...x101}=1x\frac{1}{101}=\frac{1}{101}\)

11 tháng 3 2016

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

11 tháng 3 2016

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2}-0+0+...+0-\frac{1}{100}\)

\(\Rightarrow\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)

2 tháng 8 2015

1.

\(A=\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}......\frac{2012.2013}{2013.2013}\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{2012}{2013}\)

\(A=\frac{1.2.3.4.....2012}{2.3.4.5......2013}\)

\(A=\frac{1}{2013}\)

 

\(B=\frac{2012.2013-2012.2012}{2012.2011+2012.2}\)

\(B=\frac{2012\left(2013-2012\right)}{2012\left(2011+2\right)}\)

\(B=\frac{2013-2012}{2011+2}\)

\(B=\frac{1}{2013}\)

\(Vì:\frac{ 1}{2013}=\frac{1}{2013}\)

\(\Rightarrow\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}......\frac{2012.2013}{2013.2013}=\frac{2012.2013-2012.2012}{2012.2011+2012.2}\)

\(Hay: A=B\)

10 tháng 6 2018

\(A=\frac{1\times2}{2\times2}\times\frac{2\times3}{3\times3}\times\frac{3\times4}{4\times4}\times\frac{4\times5}{5\times5}\times...\times\frac{2012\times2013}{2013\times2013}\)

\(\Rightarrow A=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{2012}{2013}\)

\(\Rightarrow A=\frac{1\times2\times3\times4\times...\times2012}{2\times3\times4\times5\times...\times2013}\)

\(\Rightarrow A=\frac{1}{2013}\)

\(B=\frac{2012\times2013-2012\times2012}{2012\times2011+2012\times2}\)

\(\Rightarrow B=\frac{2012\times\left(2013-2012\right)}{2012\times\left(2011+2\right)}\)

\(\Rightarrow B=\frac{2012\times1}{2012\times2013}\)

\(\Rightarrow B=\frac{1}{2013}\)

20 tháng 7 2020

\(\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2011.2012}\)

\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\right)\)

\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)

\(=4\left(1-\frac{1}{2012}\right)\)

\(=4.\frac{2011}{2012}\)

\(=\frac{2011}{503}\)

20 tháng 7 2020

b. \(x.\left(x+1\right)=132\)

\(\Rightarrow x^2+x=132\)

\(\Leftrightarrow x=11\)

c. \(\left(1+4+7+...+100\right):x=17\)

\(\Rightarrow\frac{\left(100+1\right).34}{2}=17x\)

\(\Rightarrow1717=17x\)

\(\Rightarrow x=101\)

a: P(x)=6x^3-4x^2+4x-2

Q(x)=-5x^3-10x^2+6x+11

M(x)=x^3-14x^2+10x+9

b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)

=10x^4-11x^3-5x^2-15x+21

 

1 tháng 5 2019

a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)

 \(=2x^4+7x^3-2x^2+2x+6\)

\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-2x^4-10x^3+6x^2-2x-4\)

b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)

                                      \(=-3x^3+4x^2+2\)

7 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{499}{500}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{499}{500}\)

\(1-\frac{1}{x+1}=\frac{499}{500}\)

\(\frac{1}{x+1}=1-\frac{499}{500}=\frac{1}{500}\)

=> x + 1 = 500

=> x = 500 - 1

=> x = 499

Vậy x = 499

7 tháng 8 2016

1/1.2 + 1/2.3 + 1/3.4 +...+ 1/x.(x+1)=499/500

1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 +...+ 1/x -1/(x+1) =499/500

1-1/(x+1)=499/500

=>x/(x+1)=499/500

=>x=499

6 tháng 9 2015

\(X=\frac{1}{x}\cdot\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\)

\(=\frac{1}{x}\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{1}{x}\cdot\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{1}{x}\cdot\frac{2}{5}\)

10 tháng 2 2017

\(X=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+......+\frac{1}{9x10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}\)

\(=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)

7 tháng 8 2016

Ta có: 1/1x2 + 1/2x3 + 1/3x4 +...+ 1/X x (X + 1) = 499/500

=> 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/X - 1/(X + 1) = 499/500

=> 1 - 1/(X + 1) = 499/500

=>      1/(X + 1) = 1 - 499/500

=>      1/(X + 1) = 1/500

=>          X + 1 = 500

=>          X       = 500 - 1

=>          X       = 499 

Đáp số: X = 499

`@` `\text {Ans}`

`\downarrow`

`a)`

Thu gọn:

`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)

`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`

`= -x^5 + 5x^4 + 2x^2 + 2x - 4`

`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)

`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`

`= x^5 - x^4 - x^3 - x^2 + 7x - 2`

`@` Tổng:

`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`

`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`

`= 4x^4 - x^3 + x^2 + 9x - 6`

`@` Hiệu:

`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`

`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`

`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`

`b)`

`@` Thu gọn:

\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)

`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`

`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`

`= x^4 - 2x^3 - x^2 + 15x + 10`

\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)

`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`

`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`

`= x^4 + 3x^3 + 2x - 4`

`@` Tổng:

`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)

`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`

`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`

`= 2x^4 + x^3 - x^2 + 17x + 6`

`@` Hiệu: 

`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)

`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`

`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`

`= -5x^3 - x^2 + 13x + 14`

`@` `\text {# Kaizuu lv u.}`