GPT: cot x= cot 70°
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\frac{k\pi}{2}\)
\(\frac{sinx}{cosx}+\frac{cosx}{sinx}+14=\frac{cos^22x}{sin^22x}\)
\(\Leftrightarrow\frac{2}{sin2x}+14=\frac{1-sin^22x}{sin^22x}\)
Đặt \(sin2x=a\) với \(\left\{{}\begin{matrix}a\ne0\\\left|a\right|\le1\end{matrix}\right.\)
\(\frac{2}{a}+14=\frac{1-a^2}{a^2}\Leftrightarrow15a^2+2a-1=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{1}{5}\\a=-\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=\frac{1}{5}=sin\alpha\\sin2x=-\frac{1}{3}=sin\beta\end{matrix}\right.\) \(\Rightarrow...\)
c.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(2x-\frac{3\pi}{4}\right)=cot\left(\frac{2\pi}{3}-x\right)\)
\(\Leftrightarrow2x-\frac{3\pi}{4}=\frac{2\pi}{3}-x+k\pi\)
\(\Leftrightarrow x=\frac{17\pi}{36}+\frac{k\pi}{3}\)
d.
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{3\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{3\pi}{4}-x+k2\pi\\2x+\frac{\pi}{3}=x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)
a.
ĐKXĐ: ...
\(\Leftrightarrow tan\left(3x-\frac{\pi}{3}\right)=tan\left(-x\right)\)
\(\Leftrightarrow3x-\frac{\pi}{3}=-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)
b.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(x-\frac{\pi}{4}\right)=cot\left(-x\right)\)
\(\Leftrightarrow x-\frac{\pi}{4}=-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)
a) \(\cot x = 1 \Leftrightarrow \cot x = \cot \frac{\pi }{4} \Leftrightarrow x = \frac{\pi }{4} + k\pi \)
b) \(\cot x = \cot \left( { - {{83}^ \circ }} \right) \Leftrightarrow x = - {83^ \circ } + k{.180^ \circ }\)
a) Để giải phương trình cot(12x + π/4) = -1, ta áp dụng tính chất của hàm cơ-tang:
cot(12x + π/4) = -1 => 12x + π/4 = π + nπ (với n là số nguyên) => 12x = 3π/4 + nπ - π/4 => 12x = 2π/4 + nπ => 12x = π/2 + nπ => x = (π/2 + nπ)/12 (với n là số nguyên)
b) Để giải phương trình cot(4x) = 1/√3, ta áp dụng tính chất của hàm cơ-tang:
cot(4x) = 1/√3 => 4x = π/6 + nπ (với n là số nguyên) => x = (π/6 + nπ)/4 (với n là số nguyên)
c) Để giải phương trình cot(x + 15 độ) = cot(60 độ), ta áp dụng tính chất của hàm cơ-tang:
cot(x + 15 độ) = cot(60 độ) => x + 15 độ = 60 độ + n180 độ (với n là số nguyên) => x = 45 độ + n180 độ (với n là số nguyên)
d) Để giải phương trình cot(30 độ - 2x) = cot(10 độ), ta áp dụng tính chất của hàm cơ-tang:
cot(30 độ - 2x) = cot(10 độ) => 30 độ - 2x = 10 độ + n180 độ (với n là số nguyên) => -2x = -20 độ + n180 độ => x = 10 độ - n90 độ (với n là số nguyên)
a: cot(1/2x+pi/4)=-1
=>cot(1/2x+pi/4)=cot(-pi/4)
=>1/2x+pi/4=-pi/4+kpi
=>1/2x=-pi/2+kpi
=>x=-pi+k2pi
b: cot 4x=1/căn 3
=>4x=pi/3+kpi
=>x=pi/12+kpi/4
c: cot(x+15 độ)=cot 60 độ
=>x+15 độ=60 độ+k*180 độ
=>x=45 độ+k*180 độ
d: cot(30 độ-2x)=cot 10 độ
=>30 độ-2x=10 độ+k*180 độ
=>2x=20 độ-k*180 độ
=>x=10 độ-k*90 độ
\(x+y+z=\frac{\pi}{2}\Rightarrow x+y=\frac{\pi}{2}-z\)
\(\Rightarrow tan\left(x+y\right)=tan\left(\frac{\pi}{2}-z\right)=cotz\)
\(\Rightarrow\frac{tanx+tany}{1-tanx.tany}=cotz\)
Mà \(cotx+coty=2cotz\Rightarrow cotx+coty=\frac{2\left(tanx+tany\right)}{1-tanx.tany}\)
\(\Rightarrow\frac{1}{tanx}+\frac{1}{tany}=\frac{2\left(tanx+tany\right)}{1-tanx.tany}\Leftrightarrow\frac{tanx+tany}{tanx.tany}=\frac{2\left(tanx+tany\right)}{1-tanx.tany}\)
\(\Rightarrow\frac{1}{tanx.tany}=\frac{2}{1-tanx.tany}\Leftrightarrow1-tanx.tany=2tanx.tany\)
\(\Rightarrow tanx.tany=\frac{1}{3}\Rightarrow cotx.coty=3\)
Ta có: \(\sin {70^o} = \cos {20^o};\;\cos {110^o} = - \cos {70^o} = - \sin {20^o}\)
\(\begin{array}{l} \Rightarrow A = {(\sin {20^o} + \cos {20^o})^2} + {(\cos {20^o} - \sin {20^o})^2}\\ = ({\sin ^2}{20^o} + {\cos ^2}{20^o} + 2\sin {20^o}\cos {20^o}) + ({\cos ^2}{20^o} + {\sin ^2}{20^o} - 2\sin {20^o}\cos {20^o})\\ = 2({\sin ^2}{20^o} + {\cos ^2}{20^o})\\ = 2\end{array}\)
Ta có: \(\tan {110^o} = - \tan {70^o} = - \cot {20^o};\;\cot {110^o} = - \cot {70^o} = - \tan {20^o}.\)
\( \Rightarrow B = \tan {20^o} + \cot {20^o} + ( - \cot {20^o}) + ( - \tan {20^o}) = 0\)
Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)
2.
\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)
\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)
3.
\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)
4.
\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)
5.
\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)
\(=tan^2x+1+tan^2x=1+2tan^2x\)
\(cotx=cot70^0\)
\(\Rightarrow x=70^0+k180^0\) (\(k\in Z\))