K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

1) x : y = 3 => x = 3y

=> x+ y = 3y + y = 4y = \(-\frac{6}{5}\) => y = \(-\frac{6}{5}\) : 4 = \(-\frac{3}{10}\)

=> x = 3.\(-\frac{3}{10}\) = \(-\frac{9}{10}\)

2)  => \(\frac{-18}{6}

20 tháng 7 2015

Một bài làm không được mà bạn ra 6 bài thì ............

20 tháng 7 2015

1) -4 - x > 3 => -4 - 3 > x => -7 > x => số nguyên x lớn nhất = -8 

2) Vì x2 + 2 \(\ge\) 2 ; y4 + 6 \(\ge\) 6  với mọi x; y =>  (x2 + 2). (y4 + 6) \(\ge\) 2.6 = 12 > 10

=> Không tồn tại x; y để thỏa mãn

3) A nguyên khi 5 chia hết cho n- 7 hay n - 7 là ước của 5 

mà n nhỏ nhất nên n - 7 nhỏ nhất => n - 7 = -5 => n = 2

4) x2 + 4x + 5 = x(x+ 4) + 5 chia hết cho x + 4 => 5 chia hết cho x + 4

=> x + 4 \(\in\) {5;-5;1;-1} => x \(\in\) {1; -9; -3; -5}

5) Gọi số đó là n

n chia 3 dư 1 => n - 1 chia hết cho 3 => n - 1 + 9 = n + 8 chia hết cho 3

n chia cho 5 dư 2 => n - 2 chia hết cho 5 => n - 2 + 10 = n + 8 chia hết cho 5

=> n + 8 chia hết cho 3 và 5 => n + 8 chia hết cho 15 => n + 8  \(\in\) B(15)

Vì n có 4 chữ số nên n + 8 \(\in\) {68.15 ; 69.15 ; ...' ; 667.15} 

=> có (667 - 68) : 1 + 1 = 600 số

6) (2x-5).(y-6) = 17 = 1.17 = 17.1 = (-1).(-17) = (-17).(-1)

=> có 4 cặp x; y thỏa mãn

30 tháng 8 2015

Nhân cả hai vế với 4 ta sẽ viết phương trình dưới dạng \(4\left(x-5\right)^2+\left(2y-1\right)^2=97.\) Chú ý rằng \(\left(2y-1\right)^2\) là một số chính phương lẻ, nên chia cho 8 dư 1. Mà 96 chia cho 8 dư 1 nên ta suy ra hiệu

\(96-\left(2y-1\right)^2\vdots8\to4\left(x-5\right)^2\vdots8\to\left(x-5\right)\vdots2\to A=4\left(x-5\right)^2\vdots16.\)

Ta thấy \(A\) là một số chính phương chia hết cho 16 và không vượt quá 97, do đó chỉ có hai số là \(16,16\times4=64.\) Tuy nhiên nếu \(A=64\)  thì \(\left(2y-1\right)^2=97-64=33\) không phải số chính phương.

Vậy ta được \(A=16\to\left(x-5\right)^2=4\to x=3,7\).   Khi đó \(\left(2y-1\right)^2=81\to y=5,-4.\)

Vậy ta được bốn cặp nghiệm là \(\left(x,y\right)=\left(3,-4\right),\left(3,5\right),\left(7,-4\right),\left(7,5\right).\) Thử lại thỏa mãn!

30 tháng 8 2015

tách ra ta có\(\left(x-5\right)^2+\left(y-\frac{1}{2}\right)^2=\frac{97}{4}=4+\frac{81}{4}\)ai thông minh tự lm nốt

27 tháng 9
 

\(x+y\) =  - \(\dfrac{6}{5}\) (1) và \(\dfrac{x}{y}\) = 3 ⇒ \(x=3y\) thay \(x=3y\) vào (1) ta có:

3y + y = - \(\dfrac{6}{5}\)

   4y = - \(\dfrac{6}{5}\)

    y = - \(\dfrac{6}{5}\) : 4

    y = - \(\dfrac{3}{10}\)

Thay y = - \(\dfrac{3}{10}\) vào \(x=3y\) ta được \(x=3.-\dfrac{3}{10}\) = -\(\dfrac{9}{10}\)

⇒ 10\(x\) = - \(\dfrac{9}{10}\).10 = -9 

Vậy \(10x=-9\)

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)