cho tam giác abc, góc A=90°, góc B =60°, AB=8cm a) tính góc C, cạnh Ac và BC b) tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
=>\(\widehat{B}\simeq53^0\)
=>\(\widehat{C}\simeq37^0\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{10}{7}\)
=>\(DB=\dfrac{30}{7}\left(cm\right);DC=\dfrac{40}{7}\left(cm\right)\)
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
a) Ta có:
\(CH=BC.\sin B=12.\sin60=6\sqrt{3}cm\)
\(\widehat{A}=180^0-\left(\widehat{B}+\widehat{C}\right)=180^0-100^0=80^0\)
\(CH=\sin A.AC\Rightarrow AC=\frac{CH}{\sin80}\approx10,553cm\)
b)\(BH=\cos B.BC=\cos60.12=6cm\)
\(AH=\cos A.AC\approx\cos80.10,553\approx1,833cm\)
\(\Rightarrow AB\approx6+1,833\approx7,833cm\)
\(\Rightarrow S_{ABC}=\frac{1}{2}CH.AB\approx\frac{1}{2}6\sqrt{3}.7,833\approx40,701cm^2\)
a) Ta có: \(BH+HC=BC\)
\(\Leftrightarrow AH\cdot\cot B+AH\cdot\cot C=BC\)
\(\Leftrightarrow AH\cdot\left(\frac{\sqrt{3}}{3}+1,3\right)=BC\)
\(\Leftrightarrow AH\cdot1,9=10\)
\(\Rightarrow AH=5,3\left(cm\right)\)
\(\Rightarrow AC=\frac{AH}{\sin C}=\frac{5,3}{0,6}=8,2\left(cm\right)\)
b) Ta có: \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{5,3\cdot10}{2}=26,5\left(cm^2\right)\)
P/s: Các kết quả chỉ tương đối
Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)
\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)