K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)

\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)

25 tháng 7 2017

Bạn kể thêm đường cao và đặt ẩn là làm ra

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

=>\(\widehat{B}\simeq53^0\)

=>\(\widehat{C}\simeq37^0\)

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{10}{7}\)

=>\(DB=\dfrac{30}{7}\left(cm\right);DC=\dfrac{40}{7}\left(cm\right)\)

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

11 tháng 10 2017

C B A 12cm H

a) Ta có:

\(CH=BC.\sin B=12.\sin60=6\sqrt{3}cm\)

\(\widehat{A}=180^0-\left(\widehat{B}+\widehat{C}\right)=180^0-100^0=80^0\)

\(CH=\sin A.AC\Rightarrow AC=\frac{CH}{\sin80}\approx10,553cm\)

b)\(BH=\cos B.BC=\cos60.12=6cm\)

\(AH=\cos A.AC\approx\cos80.10,553\approx1,833cm\)

\(\Rightarrow AB\approx6+1,833\approx7,833cm\)

\(\Rightarrow S_{ABC}=\frac{1}{2}CH.AB\approx\frac{1}{2}6\sqrt{3}.7,833\approx40,701cm^2\)

11 tháng 10 2020

a) Ta có: \(BH+HC=BC\)

\(\Leftrightarrow AH\cdot\cot B+AH\cdot\cot C=BC\)

\(\Leftrightarrow AH\cdot\left(\frac{\sqrt{3}}{3}+1,3\right)=BC\)

\(\Leftrightarrow AH\cdot1,9=10\)

\(\Rightarrow AH=5,3\left(cm\right)\)

\(\Rightarrow AC=\frac{AH}{\sin C}=\frac{5,3}{0,6}=8,2\left(cm\right)\)

b) Ta có: \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{5,3\cdot10}{2}=26,5\left(cm^2\right)\)

P/s: Các kết quả chỉ tương đối