1+2+3+4+5+6+7+8....1000.Tính tổng các số trên (công thức)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Số số hạng của dãy số là 9(số);
=> Tổng của dãy số là (9+1)*9/2=45
b,Số số hạng của dãy số là 50 số
=> Tổng của dãy số là (50+1)*50/2=1275
c, Số số hạng của dãy số là (99-1)/2+1=50 số
=> Tổng của dãy số là (99+1)*50/2= 2500
\(\frac{999}{1000}+\frac{998}{1000}+......+\frac{1}{1000}\)
\(=\frac{999+998+997+........+1}{1000}\)
\(=\frac{499500}{1000}=\frac{999}{2}\)
1/1000 + ... + 997/1000 + 998/1000 + 999/1000 = ( 1 + ... + 997 + 998 + 999 ) / 1000 = 499500/1000 = 4995/10
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
??????????????????|
\(\frac{2}{3}+\frac{1}{3}=1=\frac{2}{2}\)
\(\frac{3}{4}+\frac{2}{4}+\frac{1}{4}=\frac{6}{4}=\frac{3}{2}\);
\(\frac{4}{5}+\frac{3}{5}+\frac{2}{5}+\frac{1}{5}=2=\frac{4}{2}\)
;\(\frac{5}{6}+\frac{4}{6}+\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{15}{6}=\frac{5}{2}\)
Tổng quát:
\(\frac{n-1}{n}+\frac{n-2}{n}+...+\frac{2}{n}+\frac{1}{n}\)(\(n\in N\)) \(=\frac{n-1}{2}\)
Áp dụng:
\(\frac{999}{1000}+\frac{998}{1000}+\frac{997}{1000}+...+\frac{1}{1000}=\frac{999}{2}\).
Xem bài mình đúng không?
1+2+3+4+5+6+7+8+....+1000
=[(1000-1+1):2]x1001
=500500
Tổng là (1000+1)x 1000 : 2 = 500500.