K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

Trên tia HM lấy Q sao cho HM= MQ sửa lại tia gì nhé sai r 

2 tháng 12 2021

Sửa chỗ đó: Vẽ Q là tia đối với HM

a) Xét tứ giác HCQB có: 

M trung điểm BC

HM=MQ => M trung điểm HQ ( vì HM là tia đối với MQ)

Mà 2 đường chéo này cắt nhau tại M 

=> HCQB là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đường) (đpcm).

b) Vì HCQB là hbh

=>  HC/BQ

mà CE_|_ AB => HC_|_AB

=> CQ_|_EC

nên:CQ_|_AC (đpcm)

HCQB là hbh 

=> BE//CQ

Mà CE_|_AB

Nên: QB_|_AB (đpcm) 

c)  vì M là trung điểm HQ (tia đối)

        D trung điểm HP ( tia đối ) 

=>HM là đường tb của t/gPHQ 

Vì DM là đường tb nên DM//PQ

=> BC//PQ

=> BPQC là hình thang (1)

Xét tam giác HPQ có

HD=DP=1/2 HP (gt)

HM=MQ=1/2HQ (gt)

=> HP=HQ 

Do đó tam giác HPQ là tam giác cân tại H

=> ^HPQ=^HQP (2 góc tương ứng) (2)

Từ (1) và (2)=> BPQC là hình thang cân (đpcm)

d) ( câu này mình ngại làm b có thể bỏ đi)

undefined

11 tháng 11 2021

a: Xét tứ giác HCQB có

M là trung điểm của BC

M là trung điểm của HQ

Do đó: HCQB là hình bình hành

11 tháng 11 2021

Bạn ơi giúp mik mấy câu còn lại vs

12 tháng 11 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

13 tháng 11 2021

Còn câu b nữa bạn ơi!

 

10 tháng 10 2020

Gọi I là giao điểm của đường trung trực đoạn HC và tia phân giác ^BHC => I là điểm cố định

I nằm trên đường trung trực của HC nên IH = IC => ∆IHC cân tại I => ^IHC = ^ICH

Lại có: ^IHC = ^IHM (Do HI là tia phân giác của ^BHC, theo cách chọn điểm phụ) => ^IHM = ^ICH hay ^IHM = ^ICN

Xét ∆ICN và ∆IHM có:

       IC = IH (theo cách chọn hình phụ)

       ^ICN = ^IHM (cmt)

       CN = HM (gt)

Do đó ∆ICN = ∆IHM (c.g.c)

=> IN = IM (hai cạnh tương ứng)

Do đó I thuộc đường trung trực của MN

Vậy đường trung trực của MN luôn đi qua một điểm cố định I (đpcm)

Kẻ CG//MN(G thuộc AB), CG cắt AD tại K

=>HI vuông góc CK

=>I là trựctâm của ΔHCK

=>KI vuông góc CH

=>KI//AB

=>KI//BG

=>K là trung điểm của CG

MN//GC

=>MH/GK=HN/KC

mà GK=KC

nên MH=HN

27 tháng 2 2017

Xét tam giác AID và tam giác BIM có :

AD = BM (gt)

AI = BI (GT)

\(\widehat{A}=\widehat{B}\) (Ax song song với BM; ở vị trí so le trong)

Do đó : tam giác AID = tam giác BIM (c-g-c)

B)

Xét 2 tam giác AIM và BID có :

AI = BI (gt)

DI = IM ( tam giác AID = tam giác BIM)

\(\widehat{BID}=\widehat{AIM}\)(Đ đ)

Do đó : \(\Delta AIM=\Delta BID\left(c-g-c\right)\)

c)