Tìm số dư trong phép chia khi chia một số tự nhiên cho 91. Biết rằng nếu lấy số tự nhiên dố chia cho 7 thì được số dư là 5 và chia cho 13 thì được số dư là 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là a
ta có a chia 7 dư 5 và a chia 13 dư 4
suy ra a-5 chia hết cho 7 và a-4 chia hết cho 13
suy ra a-5+14 chia hết cho7 và a-4+13 chia hết cho 13
suy ra a+9 chia hết cho 7 và a+9 chia hết cho 13
suy ra a+9 thuộc bội chung của 7 và 13 suy ra a+9 chia hết cho bội chung nhỏ nhất của 7 và 13
suy ra a+9 chia hết cho 91 suy ra a+9-91 chia hết cho 91
suy ra a-82 chia hết cho 91 suy ra a chia 91 dư 82
Gọi số cần tìm là a.
Vì a chia 7 dư 5 nên \(\left(a+9\right)⋮7\)
Vì a chia 13 dư 4 nên \(\left(a+9\right)⋮13\)
\(\Rightarrow a+9\in BC\left(7,13\right)\)
Ta có: \(\left[7,13\right]=7.13=91\)
\(\Rightarrow a+9\in B\left(91\right)\Leftrightarrow a+9=91k\)
\(\Leftrightarrow a=91k-9\)
\(\Leftrightarrow a=91\left(k-1\right)+82\)
Vậy số đó chia 91 dư 82.
gọi số tự nhiên đó là a.
theo bài ra ta có :
a = 7t + 5 (t thuộc N)
a=13k + 4 (k thuộc N)
do đó:
a+9 = (7t + 5) + 9 = 7t + 14 (chia hết cho 7)
a+9 = (13k + 4) + 9 = 13k + 13 (chia hết cho 13)
Mà 7 và 13 nguyên tố cùng nhau nên a+9 chia hết cho 7.13 = 91
Vậy: a+9 chia hết cho 91, suy ra a chia cho 91 có số dư là 91 - 9 = 82
a)tìm số tự nhiên c , biết khi chia số 83 cho c thì được thương là 4 và số dư là 13
=>c=(83-13):4=17,5
b)tìm số tự nhiên a , biết khi chia a cho 13 thì được thương là 4 và số dư r lớn hơn 11
Ta có: 11<r<13=>r = 12
=>a=13 x 4 + 12= 64
c)tìm số tự nhiên a biết khi chia a cho 13 thì được thương là 4 và số dư là số lớn nhất có thể được ở phép chia ấy
=>r=12
=>a=13 x 4 +12 = 64
a) ta có : 83 = c . 4 + 13
83 - 13 = c . 4
70 = c .4
70 : 4 = c
=> c không thỏa mãn
b) ta có : a = 13 x 4 + r ( r > 11 ) ( r < 13 )
a - r = 13 x 4
a - r = 52
=> r = 12 vì 12 < 13 và > 11
vậy a = 52 + 12 = 64
c ) ta có : a = 13 x 4 + r ( r < 13 )
a - r = 52
=> r = 12
vậy a = 64
Gọi số cần tìm là x :
Theo bài ra ta có :
x = 7a + 5 va x= 13b + 4
Ta lại có x + 9 = 7a + 14 = 13b + 13
-> x + 9 chia hết cho 7 và 13
-> x + 9 chia hết cho 7.13 = 91
-> x + 9 = 91m -> x = 91m - 9 = 91(m -1 + 1) - 9 = 91(m-1) + 82
Vậy x chia 91 dư 82 .
2, TA có:
x + y + xy = 40
=> x(y + 1) + y + 1 = 41
=> (x + 1)(y + 1) = 41
=> x + 1 thuộc Ư(41) = {1; 41}
Xét từng trường hợp rồi thay vào tìm y
Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...
gọi số đó là a
ta có a chia 7 dư 5 và a chia 13 dư 4
suy ra a-5 chia hết cho 7 và a-4 chia hết cho 13
suy ra a-5+14 chia hết cho7 và a-4+13 chia hết cho 13
suy ra a+9 chia hết cho 7 và a+9 chia hết cho 13
suy ra a+9 thuộc bội chung của 7 và 13 suy ra a+9 chia hết cho bội chung nhỏ nhất của 7 và 13
suy ra a+9 chia hết cho 91 suy ra a+9-91 chia hết cho 91
suy ra a-82 chia hết cho 91 suy ra a chia 91 dư 82
Gọi số tự nhiên đó là a ( a ∈∈ N* )
Vì : a chia cho 7 dư 5 ⇒a−5⋮7⇒a+9⋮7⇒a−5⋮7⇒a+9⋮7
Vì : a chia cho 13 dư 4 ⇒a−4⋮13⇒a+9⋮13⇒a−4⋮13⇒a+9⋮13
⇒a+9∈BC(7,13)⇒a+9∈BC(7,13)
Mà : BC(7,13)={91;182;273;...}BC(7,13)={91;182;273;...}
⇒a+9⋮91⇒a+9=91k⇒a=91k−9⇒a+9⋮91⇒a+9=91k⇒a=91k−9 .
⇒a=91k−91+82⇒a=91(k−1)+82⇒a=91k−91+82⇒a=91(k−1)+82
⇒⇒ a chia cho 91 dư 82
Vậy ...