Tìm cặp số nguyên khác không (x;y) thỏa mãn xy = (x + y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Gọi ƯCLN(2x+5;x+2)=d}\left(d\in N\right)\)
\(\text{Ta có:}\)
\(\text{2x+5⋮d;x+2⋮d}\)
\(\Rightarrow\text{2x+5⋮d;2(x+2)⋮d}\)
\(\Rightarrow\text{2x+5⋮d;2x+4⋮d}\)
\(\Rightarrow\text{2x+5-(2x+4)⋮d}\)
\(\Rightarrow\text{2x+5-2x-4⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\Rightarrow d=1\)
\(\Rightarrow\text{ƯCLN}\left(2x+5;x+2\right)=1\)
\(\Rightarrow\text{2x+5 không chia hết cho 3 hoặc x+2 không chia hết cho 3 hoặc cả hai không chia hết cho 3}\)
\(\text{TH1:2x+5 không chia hết cho 3;x+2 chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{TH2:2x+5 chia hết cho 3;x+2 không chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{TH3:2x+5 không chia hết cho 3;x+2 không chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{Vậy không có cặp số tự nhiên (x,y) thỏa mãn}\)
Giải thử nha , đừng làm theo mình!
Vì x ; y là các số nguyên không âm
\(\Rightarrow x\ge x-y=x^2+y^2+xy\ge2xy+xy=3xy\)
- Nếu x = 0 thì - y = y2 => y = 0
- Nếu x > 0 kết hợp với x ≥ 3xy ta được 1 ≥ 3y , từ đó y = 0 => x = x2 => x = 1
Vậy phương trình có nghiệm ( x ; y ) là ( 0 ; 0 ) và ( 1 ; 0 )
Gọi ƯCLN(2x+5;x+2) = d(d\(\in N\))
Ta có:
2x+5 chia hết cho d;x+2 chia hết cho d
\(\Rightarrow\)2x+5 chia hết cho d;2(x+2) chia hết cho d
\(\Rightarrow\)2x+5 chia hết cho d;2x+4 chia hết cho d
\(\Rightarrow\)2x+5-(2x+4) chia hết cho d
\(\Rightarrow\)2x+5-2x-4 chia hết cho d
\(\Rightarrow\)1 chia hết cho d\(\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2x+5;x+2\right)=1\)
\(\Rightarrow\)2x+5 không chia hết cho 3 hoặc x+2 không chia hết cho 3 hoặc cả hai không chia hết cho 3
TH1:2x+5 không chia hết cho 3;x+2 chia hết cho 3
\(\Rightarrow\)(2x+5).(x+2)\(\ne\)3y
\(\Rightarrow\)Không có cặp số (x,y) thỏa mãn
TH2:2x+5 chia hết cho 3;x+2 không chia hết cho 3
\(\Rightarrow\)(2x+5).(x+2)\(\ne\)3y
\(\Rightarrow\)Không có cặp số (x,y) thỏa mãn
TH3:2x+5 không chia hết cho 3;x+2 không chia hết cho 3
\(\Rightarrow\)(2x+5).(x+2)\(\ne\)3y
\(\Rightarrow\)Không có cặp số (x,y) thỏa mãn
Vậy không có cặp số tự nhiên (x,y) thỏa mãn
https://www.youtube.com/channel/UCjP80p-OtLhNnRs-R4Q7yjw
Dễ thuii nek:v
\(\dfrac{7}{x}=\dfrac{y}{1}\)
=> x.y = 7
*TH1: x = 1, y = 7
*TH2: x = -1; y = -7
*TH3: x = 7; y = 1
*TH4: x = -7; y = -1
Giải:
\(\dfrac{7}{x}=\dfrac{y}{1}\)
\(\Rightarrow x.y=1.7\)
\(\Rightarrow x.y=7\)
\(\Rightarrow x\) và \(y\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng giá trị:
x=-1 thì y=-7
x=-7 thì y=-1
x=1 thì y=7
x=7 thì y=1
Vậy \(\left(x;y\right)=\left(-1;-7\right);\left(-7;-1\right);\left(1;7\right);\left(7;1\right)\)
Chúc bạn học tốt!
Truy cập link để nhận thẻ cào 50k free :
http://123link.vip/7K2YSHxh
Nhanh không cả hết !
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }
Bài 1:
Thay \(x\) = 6y vào biểu thức ta có:
|6y| - |y| = 60
|5y| = 60
5.|y| = 60
|y| = 60 : 5
|y| = 12
\(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)
Kết luận:
Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-72; -12); (72; 12)
x = 2 và y=2
k mình nha
Vì xy = ( x + y )
<=> x.( y - 1 ) - y = 0
<=> x. ( y - 1 ) - ( y - 1) = 1
Vì x và y là hai số nguyên
=> ( x - 1 ) và ( y - 1 ) cũng là số nguyên
Xét các hệ phương trình :
* x - 1 = 1 ; y - 1 = 1 <=> ( x ; y ) = ( 2 ; 2 )
* x - 1 = -1 ; y - 1 = -1 <=> ( x ; y ) = ( 0 ; 0 )
Vậy có hai cặp số nguyên thỏa mãn phương trình là : ( 2 ; 2 ) và ( 0 ; 0 )