cho biết x-y chia hết cho 6 chứng tỏ rằng
a) x+5y
b) x+17y
c) x-13y
giúp mình giải bài toán này nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Có: x + 3 = x + 1 + 2
Để x + 3 chia hết cho x + 1 => 2 chia hết cho x + 1 ( vì x + 1 chia hết cho x + 1 )
Mà x là STN => x + 1 thuộc Ư(2) { 1 ; 2 }
-, x + 1 = 1 => x = 0 (t/m)
-, x + 1 = 2 => x = 1 (t/m)
Vậy x thuộc {0 ; 1} thì x + 3 chia hết cho x + 1.
Học tốt !
\(x+3⋮x+1\)
\(x+1+2⋮x+1\)
\(2⋮x+1\)hay \(x+1\inƯ\left(2\right)=\left\{1;2\right\}\)
x + 1 | 1 | 2 |
x | 0 | 1 |
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 ﴾2x + 3y ﴿ + ﴾ 9x + 5y ﴿ = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ﴾ 2x +3y ﴿ chia hết cho 17 9x + 5y chia hết cho 17
Ngược lại ; Ta có 4 ﴾ 2x + 3y ﴿ chia hết cho 17 mà ﴾ 4 ; 17 ﴿ = 1
2x + 3y chia hết cho 17
Vậy ...
Ta có:
\(\left\{{}\begin{matrix}\left(x-y\right)⋮6\left(gt\right)\\6y⋮6\end{matrix}\right.\)
\(\Rightarrow\left(x-y+6y\right)⋮6\Leftrightarrow\left(x+5y\right)⋮6\left(đpcm\right)\)
Ta có: (x-y) chia hết cho 6
-> 6y chia hết cho 6
Suy ra:(x-y+6y) chia hết cho 6
Suy ra:(x+5y) chia hết cho 6
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
"chia 5 thiếu 1: tức là chia 5 dư 4".
x chia 2 dư 1
x chia 3 dư 1
x chia 5 dư 4
x chia hết cho 7.
Nhận thấy, x+161 sẽ chia hết cho cả 2;3;5;7 nên ta có (x+161) chia hết cho 2x3x5x7 = 210.
mà x<200 => x+161 < 361. mà x+161 chia hết cho 210 thì x+161 = 201 => x = 49.
Vậy, số đó là 49.