K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

Bài 1: 

a: \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{1}{2}\\x-\dfrac{1}{3}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=-\dfrac{1}{6}\end{matrix}\right.\)

5 tháng 12 2021
hi em mới học lớp bún sorry
5 tháng 12 2021

sorry anh nha

em ko lm đc

tại em mới lớp 6

thông cảm

chúc anh HT

5 tháng 12 2021

tôi biết

6 tháng 7 2017

Ta có : \(\left|x+\frac{2}{3}\right|=\frac{3}{5}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{2}{3}=\frac{3}{5}\\x+\frac{2}{3}=-\frac{3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}-\frac{2}{3}\\x=-\frac{3}{5}-\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{15}\\x=-\frac{19}{15}\end{cases}}\)

6 tháng 7 2017

/x/+2/3=3/5 hoặc /x/+2/3=-3/5

x=3/5-2/3              x=-3/5-2/3

x=-1/15                 x=-19/15

/x/-2,8=1/5 hoặc /x/-2,8=-1/5

x=1/5+2,8          x=-1/5+2,8

x=3                    x=13/5

/x/+1/2+3=0

x+7/2=0

x=0-7/2

x=-7/2

/2x/-3/8=0

2x=0+3/8

2x=3/8

x=3/8:2

x=3/16

26 tháng 5 2017

* Nếu \(x< 1\)

=> 1 - x + 3 - x = 2

<=> 4 - 2x = 2

<=> x = 1 (không TM)

* Nếu \(1\le x< 3\) 

=> x - 1 + 3 - x = 2

<=> 2 = 2 (đúng)

   => phương trình luôn có nghiệm.

* Nếu \(x\ge3\)

=> x - 1 + x - 3 = 2

<=> 2x - 4 = 2

<=> x = 3 (TM)

Vậy với \(1\le x< 3\)thì phương trình luôn có nghiệm

      với \(x\ge3\)thì phương trình có nghiệm x = 3.

26 tháng 5 2017

Ta có \(|x-1|+|x-3|=2\)\(\Rightarrow|x-1|+|3-x|=2\)

Áp dụng bất đẳng thức \(|a|+|b|\ge|a+b|\)

         Dấu bằng xảy ra khi và chỉ khi \(ab\ge0\)

Do đó \(|x-1|+|3-x|\ge|x-1+3-x|=|2|=2\)

Dấu bằng xảy ra khi và chỉ khi \(\left(x-1\right)\left(3-x\right)\ge0\)

\(\cdot\orbr{\begin{cases}\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\\\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\)

\(\cdot\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\Rightarrow1\le x\le3\)

\(\cdot\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\)( vô lý )

Vậy \(1\le x\le3\)

PS : vì đề bài không yêu cầu tìm \(x\in Z\) nên mình để đáp số như vậy

còn nếu yêu cầu bạn phải tìm được 3 giá trị của x là 1;2;3

22 tháng 5 2021

`|1/x+3|+|1/x-3|=1+|1/x^2-9|`
`<=>|1/x+3|+|1/x-3|=|(1/x-3)(1/x+3)|+1`
`<=>|1/x+3|-1=|(1/x-3)(1/x+3)|-|1/x-3|`
`<=>|1/x+3|-1=|(1/x-3)|(|1/x+3|-1)`
`<=>(|1/x+3|-1)(|1/x-3|-1)=0`
`+)|1/x+3|=1`
`<=>` $\left[ \begin{array}{l}\dfrac1x+3=1\\\dfrac1x+3=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\dfrac1x+2=0\\\dfrac1x+4=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}2x+1=0\\4x+1=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=-\dfrac12\\x=-\dfrac14\end{array} \right.$
`+)|1/x-3|=1`
`<=>` $\left[ \begin{array}{l}\dfrac1x-3=1\\\dfrac1x-3=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\dfrac1x-4=0\\\dfrac1x-2=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}4x-1=0\\2x-1=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=\dfrac12\\x=\dfrac14\end{array} \right.$
Vậy `S={1/2,-1/2,1/4,-1/4}`

29 tháng 7 2017

a) | 2x - 1 | = 1- 3x

\(\orbr{\begin{cases}2x-1=1-3x\\2x-1=-\left(1-3x\right)\end{cases}}\)

\(\orbr{\begin{cases}2x-3x=1+1\\2x-1=-1+3x\end{cases}}\)

\(\orbr{\begin{cases}-x=2\\2x+3x=-1+1\end{cases}}\)

\(\orbr{\begin{cases}x=-2\\5x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}\)

29 tháng 7 2017

b) | 1 - 2x | = x + 1 

\(\orbr{\begin{cases}1-2x=x+1\\1-2x=-\left(x+1\right)\end{cases}}\)

\(\orbr{\begin{cases}-2x-x=1-1\\-2x+x=-1-1\end{cases}}\)

\(\orbr{\begin{cases}-3x=0\\-x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

tương tự

\(\Leftrightarrow\left|x+2\right|\cdot\dfrac{3}{8}=\dfrac{5}{8}-\dfrac{1}{4}-10=-\dfrac{77}{8}< 0\)

Vậy: Phương trình vô nghiệm