K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

bc=db+dc

cho dù tổng khoảng cách từ d đến hai cạnh bên trên đáy bc cũng ko hay đổi vì tổng của db và dc luôn bằng bc, nó nằm trên bc

22 tháng 1 2017

ủa , sao câu hỏi của bn giống mk vậy !

m.n ơi trả lời đi giúp chúng tớ với !khocroi

23 tháng 1 2017

Toán lớp 8

28 tháng 7 2023

A B C D M E

\(MD\perp AB\) (gt)

\(AC\perp AB\) (gt)

=> MD//AC (1) \(\Rightarrow\widehat{BMD}=\widehat{C}\) (góc đồng vị)

Mà \(\widehat{B}=\widehat{C}\) (gt)

\(\Rightarrow\widehat{B}=\widehat{BMD}\) => tg BMD vuông cân tại D => MD=BD (2)

\(ME\perp AC\) (gt)

\(AB\perp AC\) (gt)

=> ME//AB (3)

C/m tương tự ta cũng có tg CME vuông cân tại E => ME=CE (4)

Từ (1) và (3) => ADME là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau)

=> MD = AE (5) và ME = AD (6)

Ta có

\(C_{ADME}=\left(MD+ME\right)x2\)

AE = AC-CE Từ (5) => MD=AC - CE Từ (4) => MD = AC - ME

\(\Rightarrow C_{ADME}=\left(AC-ME+ME\right)x2=2xAC\) không đổi

 

 

NM
7 tháng 1 2021

A B C M D E

dễ thấy tứ giác ADME là hình chữ nhật do có 3 góc vuông

nên chu vi ADME=2(AE+EM)

mà do ABC vuông cân nên góc ECM =45 độ nên MEC vuông cân tại E nên EM=EC

nên chu vi ADME=2(AE+EM)=2(AE+EC)=2AC là không đổi 

b.DE=AM nhỏ nhaasrt khi M là hình chiếu của A lên BC

9 tháng 3 2020

Giải thích các bước giải:a) FM// HC (\(\perp\)AC)\(\Rightarrow\)góc FMB=góc BCH mà BCH=DBM ( tam giác ABC cân tại A)

Xét tam giác DBM và tam giác FMB Có 

 góc BDM= góc BFM (=90)

BM chung(gt)

DBM=FMB (gt)

⇒ TAM GIÁC DMB \(\infty\)tam giác FMB

b)Theo a, ta có \(\Delta\) DBM = \(\Delta\) FMB( cạnh huyền- góc nhọn)

=> MD = BF (hai cạnh tương ứng) (*)

Ta có : FH \(\perp\) với AC(1)

ME \(\perp\) với AC(2)

Từ (1) và (2) \(\Rightarrow\): FH // ME

=> góc H1 = góc M3 (hai góc so le trong)

Xét\(\Delta\) MFH và \(\Delta\) HEM ta có:

HM: cạnh chung

Góc H1 = góc M3 (cmt)

\(\Rightarrow\) tam giác MFH = tam giác HEM (cạnh huyền - góc nhọn)

=>FH = ME (hai cạnh tương ứng) (**)

Từ (*) và (**) \(\Rightarrow\): MD + ME = BF + FH = BH

Suy ra : BH không đổi

=> MD + ME không đổi

C) Kẻ DN // AC cắt BC tại N,DK cắt BC tjai I CÓ góc DBN =góc C , góc C=DNB (đòng vị

\(\Rightarrow\) tam giác BDN cân tại D

\(\Rightarrow\)DB=DN

\(\Delta\) DBM= \(\Delta\) FMB ⇒ DB=MF

MF=HE=CK⇒BD=CK⇒DN=CK

⇒t\(\Delta\) DNI= \(\Delta\) KCI (g.c.g)

⇒ID=IK⇒I là trung điểm DK

Vậy,................................

#Châu's ngốc

9 tháng 3 2020

Vào thống kê hỏi đáp để lấy hình ảnh