K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

Gọi 2 số đó là 12a và 12b, a<b

Coi BCNN(12a,12b)=k

Vì bội chung nhỏ nhất có 2 chữ số nên giá trị lớn nhất của k là 96

Có:hai số ấy,ước chung Iớn nhất của chúng,bội chung nhỏ nhất của chúng là bốn số tự nhiên khác nhau và đều có hai chữ số.

Suy ra:: \(12a<12b\le\frac{96}{2}=48\)

=> a<b < 4

Tất nhiên a khác 1 vì nếu a=1, 12a=12=ƯCLN(12a,12b)

=> a=2;b=3 hoặc a=3;b=4

Với a=2;b=3

=> 2 số đó là 24,36

=> ƯCLN(24;36)=12

BCNN(24,36)=72

=>chọn

Với a=3, b=4

=> 2 số đó là 36,48

=> ƯCLN(36;48)=12

BCNN(36,48)=144 -> loại

Vậy 2 số cần tìm là 24,36

11 tháng 2 2016

Gọi 2 số đó là 12a và 12b, a<b

Coi BCNN(12a,12b)=k

Vì bội chung nhỏ nhất có 2 chữ số nên giá trị lớn nhất của k là 96

Có:hai số ấy,ước chung Iớn nhất của chúng,bội chung nhỏ nhất của chúng là bốn số tự nhiên khác nhau và đều có hai chữ số.

Suy ra:12a<12b\(\le\frac{96}{2}\)=48

=> a<b<4

Tất nhiên a khác 1 vì nếu a=1, 12a=12=ƯCLN(12a,12b)

=> a=2;b=3 hoặc a=3;b=4

Với a=2;b=3

=> 2 số đó là 24,36

=> ƯCLN(24;36)=12

BCNN(24,36)=72

=>chọn

Với a=3, b=4

=> 2 số đó là 36,48

=> ƯCLN(36;48)=12

BCNN(36,48)=144 -> loại

Vậy 2 số cần tìm là 24,36

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:

Gọi 2 số cần tìm là $a,b$. Vì $ƯCLN(a,b)=12$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $(x,y)=1$.

Ta có:
$a+b=144$

$\Rightarrow 12x+12y=144$

$\Rightarrow x+y=144:12=12$

Mà $(x,y)=1$ nên $(x,y)$ có thể nhận giá trị: $(x,y)=(1,11), (5,7), (7,5), (11,1)$

$\Rightarrow (a,b)=(12, 132), (60, 84), (84,60), (132,12)$

5 tháng 1 2020

mk se ko giup bn vi mk ko bt

5 tháng 1 2020

Gọi 2 số cần tìm là a và b  (a,b là 2 số tự nhiên khác 0 và có chữ số hàng đơn vị khác nhau)

Ta có : (a,b)=12 và [a,b]=72

\(\Rightarrow\)ab=(a,b).[a,b]=12.72=864

Vì (a,b)=12 nên ta có : \(\hept{\begin{cases}a=12m\\b=12n\\\left(m,n\right)=1\end{cases}}\)

Mà ab=864 nên ta có :

12m.12n=864

\(\Rightarrow\)144m.n=864

\(\Rightarrow\)mn=6

Vì (m,n)=1 và a,b có chữ số hàng đơn vị khác nhau nên ta có bảng sau :

m     2          3

n      3          2

a      24        36

b      36         24

Vậy (a;b)\(\in\){(24;36);(36;24)}

                                                                       axb =ưclnxbcnn 

                                                                     12 x 72=864=axb

                                                          giả sử a>b 

                                                        ưcln {ab} =a=kx12 b=qx12

                                                                          k>q kq=1

                                               axb =864

                        kx12xqx12=864

                               144xkq=864

                                     kq =864 : 144=6                 

                               k=6          k=3

                             q=1            q=2

                             a=72           a=36

                             b=12            b=24

                                      

9 tháng 11 2015

96 và 12 nhé bạn

5 tháng 8 2023

Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:

a + b = 66 (1)
GCD(a, b) = 6 (2)

Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.

Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:

a = 5m
b = 6n

Trong đó m và n là các số tự nhiên.

Thay vào (1), ta có:

5m + 6n = 66

Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.

Thử m = 1, ta có:

5 + 6n = 66
6n = 61
n ≈ 10.17

Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.

Thử m = 2, ta có:

10 + 6n = 66
6n = 56
n ≈ 9.33

Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.

Thử m = 3, ta có:

15 + 6n = 66
6n = 51
n ≈ 8.5

Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.

Thử m = 4, ta có:

20 + 6n = 66
6n = 46
n ≈ 7.67

Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.

Thử m = 5, ta có:

25 + 6n = 66
6n = 41
n ≈ 6.83

Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.

Thử m = 6, ta có:

30 + 6n = 66
6n = 36
n = 6

Với m = 6 và n = 6, ta có:

a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36

Vậy, hai số tự nhiên cần tìm là 30 và 36.

Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:

a - b = 84 (1)
UCLN(a, b) = 12 (2)

Ta có thể viết lại a và b dưới dạng:

a = 12m
b = 12n

Trong đó m và n là các số tự nhiên.

Thay vào (1), ta có:

12m - 12n = 84

Chia cả hai vế của phương trình cho 12, ta có:

m - n = 7 (3)

Từ (2) và (3), ta có hệ phương trình:

m - n = 7
m + n = 12

Giải hệ phương trình này, ta có:

m = 9
n = 3

Thay m và n vào a và b, ta có:

a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36

Vậy, hai số tự nhiên cần tìm là 108 và 36.

5 tháng 8 2023

1) \(a+b=66;UCLN\left(a;b\right)=6\)

\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)

mà có 1 số chia hết cho 5

\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)

Vậy 2 số đó là 30 và 36 thỏa đề bài

2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)

\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)

Vậy 2 số đó là 48 và 36 thỏa đề bài